-
Perovskite/silicon tandem solar cells, by combining perovskite as a top absorber material and crystalline silicon as a bottom absorber material, can expand and enhance the utilization of solar spectrum. Therefore, such a tandem structure shows great potential to break through the Shockley-Queisser (SQ) limit of 31%-33% for single-junction (SJ) solar cells and is considered as one of the most promising approaches to achieving the higher performance in photoelectric conversion of solar cells. Reducing the optical losses from the surface and interfaces of cell device and making more photons propagate into the active layers are the key factors for achieving the goal. In this paper, the enhancement of spectral response and energy conversion efficiency of perovskite/silicon tandem solar cells depending on Au, Ag, Cu, Al nanosphere are studied by using the finite difference time domain method and rigorous coupled-wave analysis. The results show that owing to the introduction of metal nanosphere, the transmittance of photons propagating into the active material is promoted significantly. Therefore, the cell device achieves an apparent increase both in total absorbance and in quantum efficiency. The observed weighted average transmittance and energy conversion efficiency are increased from 73.16% and 23.09% to 79.15% and 24.97%, respectively, with an 8.14% improvement for the perovskite/silicon tandem solar cells coated with the optimized Al nanospheres.
-
Keywords:
- metal nanostructure /
- optical properties /
- plasmon /
- tandem cell
[1] Masuko K, Shigematsu M, Hashiguchi T 2014 IEEE J. Photovolt. 4 1433Google Scholar
[2] Yoshikawa K, Kawasaki H, Yoshida W 2017 Nat. Energy 2 17032Google Scholar
[3] Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184Google Scholar
[4] Liu X, Jiang J, Wang F, et al. 2019 ACS Appl. Mater. Interfaces 11 46894Google Scholar
[5] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 Am. Chem. Soc. 131 6050Google Scholar
[6] The National Renewable Energy Laboratory (NREL) 2021 https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.
[7] Jeong M, Choi I W, Go E M 2020 Science 369 1615Google Scholar
[8] Jeong J, Kim M, Seo J 2021 Nature 592 381Google Scholar
[9] 姚鑫, 丁艳丽, 张晓丹 2015 物理学报 64 038805Google Scholar
Yao X, Ding Y L, Zhang X D 2015 Acta Phys. Sin. 64 038805Google Scholar
[10] 李春静, 杨瑞霞, 田汉民 2018 物理 47 367Google Scholar
Li C J, Yang R X, Tian H M 2018 Physics 47 367Google Scholar
[11] Wang R, Huang T, Xue J 2021 Nat. Photonics 15 411Google Scholar
[12] Zhao J, Wang A, Green M A 1998 Appl. Phys. Lett. 73 1991Google Scholar
[13] Eperon G E, Leijtens T, Bush K A 2016 Science 354 861Google Scholar
[14] Eperon G E, Stranks S D, Menelaou C 2014 Energ Environ. Sci. 7 982Google Scholar
[15] Hao F, Stoumpos C C, Chang R P H 2014 J. Am. Chem. Soc. 136 8094Google Scholar
[16] Unger E L, Kegelmann L, Suchan K 2017 J. Mater. Chem. A 5 11401Google Scholar
[17] Green M A 2013 Philos. Trans. Royal Soc. A 371 20110413Google Scholar
[18] Ba L, Liu H, Shen W 2018 Prog. Photovolt. 26 924Google Scholar
[19] Sahli F, Werner J, Kamino B A 2018 Nat. Mater. 17 820Google Scholar
[20] Chen B, Yu Z, Liu K 2019 Joule 3 177Google Scholar
[21] Hou Y, Aydin E, De Bastiani M 2020 Science 367 1135Google Scholar
[22] 宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前 2020 物理学报 69 188801Google Scholar
Gong B Q, Chen X Y, Wang W P, Wang Z Y, Zhou H, Shen X Q 2020 Acta Phys. Sin. 69 188801Google Scholar
[23] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前 2021 物理学报 70 218801Google Scholar
Jiang Y, Wang S Y, Wang Z Y, Zhou H, Ka M L, Zhao S, Shen X Q 2021 Acta Phys. Sin. 70 218801Google Scholar
[24] Ferry V E 2011 Light Trapping in Plasmonic Solar Cells (Los Angeles: California Institute of Technology)
[25] Saliba M, Zhang W, Burlakov V M, et al. 2015 Adv. Funct. Mater. 25 5038Google Scholar
[26] Santbergen R, Mishima R, Meguro T, et al. 2016 Opt. Express 24 A1288Google Scholar
[27] Edward D P 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press) p519
[28] William R E, Holly F. Z, Eric M T, Rizia B, 2016 Energ Environ. Sci. 9 1577Google Scholar
[29] Xu Q, Liu F, Liu Y X, Meng W S, Cui K Y, Feng X, Zhang W, Huang Y D, 2014 Opt. Express 22 A301Google Scholar
-
图 1 钙钛矿/硅叠层电池的仿真模型及结构参数 (a)电池模型; (b)金属纳米球的直径及周期示意图; (c)折射率; (d)消光参数
Figure 1. Schematic diagram of perovskite/silicon tandem solar cell with metal nanospheres and structural parameters for simulation: (a) Cell model; (b) schematic diagram of diameter and period of metal nanospheres; (c) refractive index; (d) extinction parameter.
图 4 不同金属纳米球调控的电池光谱响应特性和光电转换效率 (a)电池吸收光谱; (b)量子响应效率; (c)短路电流密度; (d) I-V特性曲线
Figure 4. Spectral response characteristics and photoelectric conversion performance of solar cell with different metal nanospheres: (a) Total absorption of cell devices; (b) external quantum efficiency; (c) short-circuit current density; (d) current-voltage characteristics.
表 1 不同金属纳米球的最优结构参数及相应的光学特性
Table 1. Optimized structural parameters and corresponding optical properties of different metal nanospheres.
D/nm P/nm Tav/% Aav/% Flat — — 73.16 76.83 Au 110 355 75.28 82.78 Cu 110 295 76.33 83.10 Ag 110 245 78.59 83.61 Al 105 205 79.15 83.84 -
[1] Masuko K, Shigematsu M, Hashiguchi T 2014 IEEE J. Photovolt. 4 1433Google Scholar
[2] Yoshikawa K, Kawasaki H, Yoshida W 2017 Nat. Energy 2 17032Google Scholar
[3] Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184Google Scholar
[4] Liu X, Jiang J, Wang F, et al. 2019 ACS Appl. Mater. Interfaces 11 46894Google Scholar
[5] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 Am. Chem. Soc. 131 6050Google Scholar
[6] The National Renewable Energy Laboratory (NREL) 2021 https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.
[7] Jeong M, Choi I W, Go E M 2020 Science 369 1615Google Scholar
[8] Jeong J, Kim M, Seo J 2021 Nature 592 381Google Scholar
[9] 姚鑫, 丁艳丽, 张晓丹 2015 物理学报 64 038805Google Scholar
Yao X, Ding Y L, Zhang X D 2015 Acta Phys. Sin. 64 038805Google Scholar
[10] 李春静, 杨瑞霞, 田汉民 2018 物理 47 367Google Scholar
Li C J, Yang R X, Tian H M 2018 Physics 47 367Google Scholar
[11] Wang R, Huang T, Xue J 2021 Nat. Photonics 15 411Google Scholar
[12] Zhao J, Wang A, Green M A 1998 Appl. Phys. Lett. 73 1991Google Scholar
[13] Eperon G E, Leijtens T, Bush K A 2016 Science 354 861Google Scholar
[14] Eperon G E, Stranks S D, Menelaou C 2014 Energ Environ. Sci. 7 982Google Scholar
[15] Hao F, Stoumpos C C, Chang R P H 2014 J. Am. Chem. Soc. 136 8094Google Scholar
[16] Unger E L, Kegelmann L, Suchan K 2017 J. Mater. Chem. A 5 11401Google Scholar
[17] Green M A 2013 Philos. Trans. Royal Soc. A 371 20110413Google Scholar
[18] Ba L, Liu H, Shen W 2018 Prog. Photovolt. 26 924Google Scholar
[19] Sahli F, Werner J, Kamino B A 2018 Nat. Mater. 17 820Google Scholar
[20] Chen B, Yu Z, Liu K 2019 Joule 3 177Google Scholar
[21] Hou Y, Aydin E, De Bastiani M 2020 Science 367 1135Google Scholar
[22] 宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前 2020 物理学报 69 188801Google Scholar
Gong B Q, Chen X Y, Wang W P, Wang Z Y, Zhou H, Shen X Q 2020 Acta Phys. Sin. 69 188801Google Scholar
[23] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前 2021 物理学报 70 218801Google Scholar
Jiang Y, Wang S Y, Wang Z Y, Zhou H, Ka M L, Zhao S, Shen X Q 2021 Acta Phys. Sin. 70 218801Google Scholar
[24] Ferry V E 2011 Light Trapping in Plasmonic Solar Cells (Los Angeles: California Institute of Technology)
[25] Saliba M, Zhang W, Burlakov V M, et al. 2015 Adv. Funct. Mater. 25 5038Google Scholar
[26] Santbergen R, Mishima R, Meguro T, et al. 2016 Opt. Express 24 A1288Google Scholar
[27] Edward D P 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press) p519
[28] William R E, Holly F. Z, Eric M T, Rizia B, 2016 Energ Environ. Sci. 9 1577Google Scholar
[29] Xu Q, Liu F, Liu Y X, Meng W S, Cui K Y, Feng X, Zhang W, Huang Y D, 2014 Opt. Express 22 A301Google Scholar
Catalog
Metrics
- Abstract views: 4955
- PDF Downloads: 118
- Cited By: 0