Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Radiation hardening by process technology for high voltage nMOSFET in 180 nm embeded flash process

Chen Xiao-Liang Sun Wei-Feng

Citation:

Radiation hardening by process technology for high voltage nMOSFET in 180 nm embeded flash process

Chen Xiao-Liang, Sun Wei-Feng
PDF
HTML
Get Citation
  • Radiation-hardened embedded flash technology is widely used in aerospace field. The high voltage nMOSFET is the key device to be hardened as it is the most sensitive device to total ionizing dose (TID) effect. In this study, the shallow tench isolation (STI) sidewall implantation method is used to harden 5 V nMOSFET for 180 nm eFlash process. Through the study of the TID response of the device, two problems emerge in this hardening technology. Firstly, the hardening ions are implanted after STI trench etching, the doping profile is influenced by the following thermal process, resulting in lower doping concentration at STI edge. The device fails to work due to high leakage current after 1×105 rad (1 rad = 10–2 Gy) (Si) radiation. Secondly, the hardening ions that are implanted in drain region reduce the breakdown voltage of PN junction on the drain side. Device cannot satisfy the actual requirement in the circuit. To solve these problems, we propose a new device hardening method called partial channel ion implantation. Comparing with previous method, in order to reduce the doping redistribution effect, we adjust the hardening ion implantation to an extent after the oxidation of gate oxide. Moreover, an extra mask is introduced to determine the hardening implantation region to avoid ion implantation on the drain side of the device. Therefore, the drain breakdown voltage will not be influenced by hardening implantation. By using this new hardening technology for high voltage NMOS, the device can maintain the typical design of strip-type gate. The hardening method is compatible with general process technology and does not influence the electrical parameters of the device obviously. The results show that with the partial channel ion implantation method, the drain leakage of the device is kept at a pico-ampere level after 1.5×105 rad (Si) radiation. That is five orders of magnitude lower than that obtained by using previous STI implantation hardening technology.
      Corresponding author: Chen Xiao-Liang, four_1@126.com
    [1]

    Barnaby H J, McLain M L, Sanchez Esqueda I, Chen X J 2009 IEEE Trans. Circuits Syst. Ⅰ 56 1870Google Scholar

    [2]

    卓青青, 刘红侠, 杨兆年, 蔡慧民, 郝跃 2012 物理学报 61 220702Google Scholar

    Zhuo Q Q, Liu H X, Yang Z N, Cai H M, Hao Y 2012 Acta Phys. Sin. 61 220702Google Scholar

    [3]

    Zheng M Q, Liu Y, Duan C, Luo M T 2014 12 th IEEE International Conference on Solid-State and Integrated Circuit Technology Guilin, China, October 28–31, 2014 p1

    [4]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Microelectron. Reliab. 51 1148Google Scholar

    [5]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Microelectron. Reliab. 51 1295Google Scholar

    [6]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Wang R, Zou S C 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3498Google Scholar

    [7]

    刘一宁, 杨亚鹏, 陈法国, 张建岗, 郭荣, 梁润成 2021 核技术 44 030502Google Scholar

    Liu Y N, Yang Y P, Chen F G, Zhang J G, Guo R, Liang R C 2021 Nucl. Tech. 44 030502Google Scholar

    [8]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, VÉronique F C 2008 IEEE Trans. Nucl. Sci. 55 1833Google Scholar

    [9]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix 2010 IEEE Trans. Nucl. Sci. 57 1747Google Scholar

    [10]

    王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯 2014 物理学报 22 226101Google Scholar

    Wang X, Lu W, Wu X, Ma W Y, Cui J W, Liu M H, Jiang K 2014 Acta Phys. Sin. 22 226101Google Scholar

    [11]

    郑齐文, 崔江维, 王汉宁, 周航, 余德昭, 魏莹, 苏丹丹 2016 物理学报 65 076102Google Scholar

    Zheng Q W, Cui J W, Wang H N, Zhou H, Yu D Z, Wei Y, Su D D 2016 Acta Phys. Sin. 65 076102Google Scholar

    [12]

    Giovanni B, Valentino L, Alberto S, Stefano G 2013 Proceedings of the European Conference on Radiation and its Effects on Components and Systems Oxford, UK, September 23–27, 2013 p1

    [13]

    范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红 2012 物理学报 61 016106Google Scholar

    Fan X, Li W, Li P, Zhang B, Xie X D, Wang G, Hu B, Zhai Y H 2012 Acta Phys. Sin. 61 016106Google Scholar

    [14]

    Clark L T, Mohr K C, Holbert K E 2007 IEEE International Reliability Physics Symposium Proceedings Phoenix, USA, April 15–19, 2007 p582

    [15]

    Lee M S, Lee H C 2013 IEEE Trans. Nucl. Sci. 60 3084Google Scholar

    [16]

    Malik M, Prakash N R, Kumar A, Jatana H S 2022 Silicon 14 3891Google Scholar

    [17]

    董艺, 沈鸣杰, 刘岐 2018 航天器环境工程 35 468Google Scholar

    Dong Y, Shen M J, Liu Q 2018 Spacecr. Environ. Eng. 35 468Google Scholar

    [18]

    Chang J S, Chong K S, Shu W, Lin T, Jiang J, Lwin N K Z, Kang Y 2014 IEEE 57th International Midwest Symposium on Circuits and Systems College Station, USA, August 3–6, 2014 p821

    [19]

    Vaz P I, Both T H, Vidor F F, Brum R M, Wirth G I 2018 J. Electron. Test. 34 735Google Scholar

    [20]

    Song L, Hu Z Y, Zhang M Y, Liu X N, Dai L H, Zhang Z X, Zou S C 2017 Microelectron. Reliab. 74 1Google Scholar

    [21]

    Peng C, Hu Z Y, En Y F, Chen Y Q, Lei Z F, Zhang Z G, Zhang Z X, Li B 2018 IEEE Trans. Nucl. Sci. 65 877Google Scholar

    [22]

    谢儒彬, 吴建伟, 陈海波, 李艳艳, 洪根深 2016 太赫兹科学与电子信息学报 14 805Google Scholar

    Xie R B, Wu J W, Chen H B, Li Y Y, Hong G S 2016 J. Terahertz Sci. Electron. Inf. Technol. 14 805Google Scholar

    [23]

    王思浩, 鲁庆, 王文华, 安霞, 黄如 2010 物理学报 59 1970Google Scholar

    Wang S H, Lu Q, Wang W H, An X, Huang R 2010 Acta Phys. Sin. 59 1970Google Scholar

  • 图 1  MOS结构中辐照产生和积累电荷能带示意图[8]

    Figure 1.  Band diagram of radiation induced charge generation and accumulation in MOS structure[8].

    图 2  辐射导致的STI侧壁寄生NMOS示意图

    Figure 2.  Schematic of radiation induced parasitic NMOS at STI sidewall.

    图 3  传统的STI场区离子注入加固技术示意图 (a)器件版图; (b)工艺示意图

    Figure 3.  Schematic of traditional ion implantation technology on STI field region: (a) Layout of the device; (b) diagram of the process

    图 4  5 V NMOS器件总剂量效应测试结果 (a) 无STI场区离子注入; (b) 场区离子注入剂量5×1013 cm–2 ; (c) 场区离子注入剂量8×1013 cm–2

    Figure 4.  Total ionizing dose test results of 5 V NMOS device: (a) Without STI field implantation; (b) STI filed implantation dose 5×1013 cm–2 ; (c) STI filed implantation dose 8×1013 cm–2.

    图 5  STI边缘掺杂离子浓度仿真 (a) STI结构中离子浓度分布图; (b) 不同工艺热预算下不同位置的离子浓度分布对比

    Figure 5.  Simulation of doping concentration at STI edge region: (a) Ion distribution of STI structure; (b) doping profile comparison at various positions under different thermal budget.

    图 6  STI场区离子注入对漏击穿电压的影响示意图

    Figure 6.  Schematic of the impact of ion implantation on drain breakdown voltage.

    图 7  STI场区加固注入剂量对器件漏击穿电压的影响

    Figure 7.  Impact of hardening implantation dose on drain breakdown voltage.

    图 8  新型抗总剂量加固注入器件结构和能带图

    Figure 8.  Device structure and band diagram with the new hardening ion implantation.

    图 9  采用部分沟道离子注入器件总剂量效应 (a)加固注入剂量2×1013 cm–2; (b)加固注入剂5×1013 cm–2 ; (c)加固注入剂量8×1013 cm–2

    Figure 9.  TID effect of the devices with partial channel hardened implantation: (a) Hardening implantation dose 2×1013 cm–2 ; (b) hardening implantation dose 5×1013 cm–2 ; (c) hardening implantation dose 8×1013 cm–2.

    表 1  STI场区离子注入实验分片方案

    Table 1.  Split condition of ion implantation for experiment

    样品STI场区离子加固注入
    能量/keV剂量/cm–2
    #11200
    #21205×1013
    #31208×1013
    DownLoad: CSV

    表 2  两种注入加固方案测试结果对比

    Table 2.  Comparison of two total ionizing dose hardening methodology.

    测试条件和参数STI场区加固技术部分沟道离子注入技术
    #1#2#3 #4#5#6
    辐照前VT/V0.720.750.78 0.740.760.79
    IDsat/(μA·μm–1)428421431426433430
    Ioff /(pA·μm–1)9.79.51.42.01.12.2
    BVD/V12.211.411.1 12.112.212.1
    1×105 rad(Si)辐照后VT/VNANA0.35 0.670.650.69
    IDsat/(μA·μm–1)448436445444449441
    Ioff /(pA·μm–1)1.9×1072.5×1075.0×1065.3×1025.93.0
    辐照后
    参数变化
    ΔVT/%–55.1–9.5–14.5–12.7
    ΔIDsat/%4.73.63.24.23.72.6
    ΔIoff/%1.4×1082.6×1083.6×1082.6×1054.2×10236
    DownLoad: CSV
  • [1]

    Barnaby H J, McLain M L, Sanchez Esqueda I, Chen X J 2009 IEEE Trans. Circuits Syst. Ⅰ 56 1870Google Scholar

    [2]

    卓青青, 刘红侠, 杨兆年, 蔡慧民, 郝跃 2012 物理学报 61 220702Google Scholar

    Zhuo Q Q, Liu H X, Yang Z N, Cai H M, Hao Y 2012 Acta Phys. Sin. 61 220702Google Scholar

    [3]

    Zheng M Q, Liu Y, Duan C, Luo M T 2014 12 th IEEE International Conference on Solid-State and Integrated Circuit Technology Guilin, China, October 28–31, 2014 p1

    [4]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Microelectron. Reliab. 51 1148Google Scholar

    [5]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Microelectron. Reliab. 51 1295Google Scholar

    [6]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Wang R, Zou S C 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3498Google Scholar

    [7]

    刘一宁, 杨亚鹏, 陈法国, 张建岗, 郭荣, 梁润成 2021 核技术 44 030502Google Scholar

    Liu Y N, Yang Y P, Chen F G, Zhang J G, Guo R, Liang R C 2021 Nucl. Tech. 44 030502Google Scholar

    [8]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, VÉronique F C 2008 IEEE Trans. Nucl. Sci. 55 1833Google Scholar

    [9]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix 2010 IEEE Trans. Nucl. Sci. 57 1747Google Scholar

    [10]

    王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯 2014 物理学报 22 226101Google Scholar

    Wang X, Lu W, Wu X, Ma W Y, Cui J W, Liu M H, Jiang K 2014 Acta Phys. Sin. 22 226101Google Scholar

    [11]

    郑齐文, 崔江维, 王汉宁, 周航, 余德昭, 魏莹, 苏丹丹 2016 物理学报 65 076102Google Scholar

    Zheng Q W, Cui J W, Wang H N, Zhou H, Yu D Z, Wei Y, Su D D 2016 Acta Phys. Sin. 65 076102Google Scholar

    [12]

    Giovanni B, Valentino L, Alberto S, Stefano G 2013 Proceedings of the European Conference on Radiation and its Effects on Components and Systems Oxford, UK, September 23–27, 2013 p1

    [13]

    范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红 2012 物理学报 61 016106Google Scholar

    Fan X, Li W, Li P, Zhang B, Xie X D, Wang G, Hu B, Zhai Y H 2012 Acta Phys. Sin. 61 016106Google Scholar

    [14]

    Clark L T, Mohr K C, Holbert K E 2007 IEEE International Reliability Physics Symposium Proceedings Phoenix, USA, April 15–19, 2007 p582

    [15]

    Lee M S, Lee H C 2013 IEEE Trans. Nucl. Sci. 60 3084Google Scholar

    [16]

    Malik M, Prakash N R, Kumar A, Jatana H S 2022 Silicon 14 3891Google Scholar

    [17]

    董艺, 沈鸣杰, 刘岐 2018 航天器环境工程 35 468Google Scholar

    Dong Y, Shen M J, Liu Q 2018 Spacecr. Environ. Eng. 35 468Google Scholar

    [18]

    Chang J S, Chong K S, Shu W, Lin T, Jiang J, Lwin N K Z, Kang Y 2014 IEEE 57th International Midwest Symposium on Circuits and Systems College Station, USA, August 3–6, 2014 p821

    [19]

    Vaz P I, Both T H, Vidor F F, Brum R M, Wirth G I 2018 J. Electron. Test. 34 735Google Scholar

    [20]

    Song L, Hu Z Y, Zhang M Y, Liu X N, Dai L H, Zhang Z X, Zou S C 2017 Microelectron. Reliab. 74 1Google Scholar

    [21]

    Peng C, Hu Z Y, En Y F, Chen Y Q, Lei Z F, Zhang Z G, Zhang Z X, Li B 2018 IEEE Trans. Nucl. Sci. 65 877Google Scholar

    [22]

    谢儒彬, 吴建伟, 陈海波, 李艳艳, 洪根深 2016 太赫兹科学与电子信息学报 14 805Google Scholar

    Xie R B, Wu J W, Chen H B, Li Y Y, Hong G S 2016 J. Terahertz Sci. Electron. Inf. Technol. 14 805Google Scholar

    [23]

    王思浩, 鲁庆, 王文华, 安霞, 黄如 2010 物理学报 59 1970Google Scholar

    Wang S H, Lu Q, Wang W H, An X, Huang R 2010 Acta Phys. Sin. 59 1970Google Scholar

  • [1] Gu Zhao-Qiao, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Zhang Hong, Ju An-An, Liu Yi-Tian. Total dose effect and annealing characteristics of silicon carbide field effect transistor devices under different stresses. Acta Physica Sinica, 2021, 70(16): 166101. doi: 10.7498/aps.70.20210515
    [2] Cao Yang, Xi Kai, Xu Yan-Nan, Li Mei, Li Bo, Bi Jin-Shun, Liu Ming. Total ionizing dose effects of γ and X-rays on 55 nm silicon-oxide-nitride-oxide-silicon single flash memory cell. Acta Physica Sinica, 2019, 68(3): 038501. doi: 10.7498/aps.68.20181661
    [3] Wang Shuo, Chang Yong-Wei, Chen Jing, Wang Ben-Yan, He Wei-Wei, Ge Hao. Total ionizing dose effects on innovative silicon-on-insulator static random access memory cell. Acta Physica Sinica, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [4] Xu Ping, Tang Shao-Tuo, Yuan Xia, Huang Hai-Xuan, Yang Tuo, Luo Tong-Zheng, Yu Jun. Design of an embedded tricolor-shifting device. Acta Physica Sinica, 2018, 67(2): 024202. doi: 10.7498/aps.67.20170782
    [5] Xu Ping, Yuan Xia, Yang Tuo, Huang Hai-Xuan, Tang Shao-Tuo, Huang Yan-Yan, Xiao Yu-Fei, Peng Wen-Da. Design of embedded tri-color shift device. Acta Physica Sinica, 2017, 66(12): 124201. doi: 10.7498/aps.66.124201
    [6] Tang Hua-Lian, Xu Bei-Lei, Zhuang Yi-Qi, Zhang Li, Li Cong. Distribution characteristic of p-channel metal-oxide-semiconductor negative bias temperature instability effect under process variations. Acta Physica Sinica, 2016, 65(16): 168502. doi: 10.7498/aps.65.168502
    [7] Zheng Qi-Wen, Cui Jiang-Wei, Wang Han-Ning, Zhou Hang, Yu De-Zhao, Wei Ying, Su Dan-Dan. Dose-rate sensitivity of deep sub-micro complementary metal oxide semiconductor process. Acta Physica Sinica, 2016, 65(7): 076102. doi: 10.7498/aps.65.076102
    [8] Zhuo Qing-Qing, Liu Hong-Xia, Peng Li, Yang Zhao-Nian, Cai Hui-Min. Mechanism of three kink effects in irradiated partially-depleted SOINMOSFET's. Acta Physica Sinica, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [9] Zhang Xing-Yao, Guo Qi, Lu Wu, Zhang Xiao-Fu, Zheng Qi-Wen, Cui Jiang-Wei, Li Yu-Dong, Zhou Dong. Serial ferroelectric memory ionizing radiation effects and annealing characteristics. Acta Physica Sinica, 2013, 62(15): 156107. doi: 10.7498/aps.62.156107
    [10] Zhuo Qing-Qing, Liu Hong-Xia, Wang Zhi. Single event effect of 3D H-gate SOI NMOS devices in total dose ionizing. Acta Physica Sinica, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [11] Ning Bing-Xu, Hu Zhi-Yuan, Zhang Zheng-Xuan, Bi Da-Wei, Huang Hui-Xiang, Dai Ruo-Fan, Zhang Yan-Wei, Zou Shi-Chang. Effects of total ionizing dose on narrow-channel SOI NMOSFETs. Acta Physica Sinica, 2013, 62(7): 076104. doi: 10.7498/aps.62.076104
    [12] Peng Li, Zhuo Qing-Qing, Liu Hong-Xia, Cai Hui-Min. Gate length dependence of SOI NMOS device response to total dose irradiation. Acta Physica Sinica, 2012, 61(24): 240703. doi: 10.7498/aps.61.240703
    [13] Zhuo Qing-Qing, Liu Hong-Xia, Yang Zhao-Nian, Cai Hui-Min, Hao Yue. The total dose irradiation effects of SOI NMOS devices under different bias conditions. Acta Physica Sinica, 2012, 61(22): 220702. doi: 10.7498/aps.61.220702
    [14] Hu Zhi-Yuan, Liu Zhang-Li, Shao Hua, Zhang Zheng-Xuan, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. The influence of channel length on total ionizing dose effect in deep submicron technologies. Acta Physica Sinica, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [15] Gao Bo, Liu Gang, Wang Li-Xin, Han Zheng-Sheng, Zhang Yan-Fei, Wang Chun-Ling, Wen Jing-Chao. Research on the total dose effects for domestic VDMOS devices used in satellite. Acta Physica Sinica, 2012, 61(17): 176107. doi: 10.7498/aps.61.176107
    [16] Liu Zhang-Li, Hu Zhi-Yuan, Zhang Zheng-Xuan, Shao Hua, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. Total ionizing dose effect of 0.18 m nMOSFETs. Acta Physica Sinica, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [17] He Bao-Ping, Ding Li-Li, Yao Zhi-Bin, Xiao Zhi-Gang, Huang Shao-Yan, Wang Zu-Jun. Three-dimensional simulation of total dose effects on ultra-deep submicron devices. Acta Physica Sinica, 2011, 60(5): 056105. doi: 10.7498/aps.60.056105
    [18] He Bao-Ping, Yao Zhi-Bin. Research on prediction model of radiation effect for complementary metal oxide semiconductor devices at low dose rate irradiation in space environment. Acta Physica Sinica, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [19] Wang Jun, Wang Lei, Dong Ye-Min, Zou Xin, Shao Li, Li Wen-Jun, Steve Yang. Mechanism and impact of the double-hump substrate current in high-voltage double diffused drain MOS transistors. Acta Physica Sinica, 2008, 57(7): 4492-4496. doi: 10.7498/aps.57.4492
    [20] Qiao Ming, Zhang Bo, Li Zhao-Ji, Fang Jian, Zhou Xian-Da. Analysis of the back-gate effect on the breakdown behavior of lateral high-voltage SOI transistors. Acta Physica Sinica, 2007, 56(7): 3990-3995. doi: 10.7498/aps.56.3990
Metrics
  • Abstract views:  4988
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2022
  • Accepted Date:  27 July 2022
  • Available Online:  28 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回