Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Noval carrier accumulation reverse-conducting lateral insulated gate bipolar transistor

Duan Bao-Xing Wang Jia-Sen Tang Chun-Ping Yang Yin-Tang

Citation:

Noval carrier accumulation reverse-conducting lateral insulated gate bipolar transistor

Duan Bao-Xing, Wang Jia-Sen, Tang Chun-Ping, Yang Yin-Tang
PDF
HTML
Get Citation
  • Reverse-conducting lateral insulated gate bipolar transistor (RC-LIGBT) with freewheeling diode integrated in the body by introducing n+ anode can realize the reverse conduction and optimize the turn-off characteristics of the device, which is a promising device in a power integrated circuit. In this work, a novel RC-LIGBT with electron-controlled gate (EG) and separated short-anode (SSA) is proposed and investigated by TCAD simulation, which can achieve low on-state voltage drop (Von) and low turn-off loss (Eoff) at the same time. The EG structure of p-n-n+-p (p+ region/n-type silicon region/n-type barrier layer/p+ region) is adopted, the gate electrode and anode electrode are connected by the EG structure. In the forward conduction state, a high-density electron accumulation layer is formed on the surface of the drift region by EG structure, which greatly reduces the Von of the device. At the same time, the use of the SSA structure can also optimize the Eoff of the device by forming an additional electron extraction channel. In addition, based on the EG structure, a low-doping p-drift can be combined with the SSA structure to simply achieve reverse-conduction and snapback-free characteristics. Furthermore, the EG structure and the SSA structure can complement each other. On the one hand, the high-density electron accumulation layer formed by EG structure compensates for the weakened conductance modulation effect caused by the SSA structure. On the other hand, the electron extraction channel of the SSA structure enables a large number of accumulated electrons to be removed quickly. The simulation results show that the proposed device has an excellent trade-off relationship between Von and Eoff, specifically, Von is 1.16V, which is 55% lower than that of SSA LIGBT, and Eoff is 0.099 mJ/cm2, which is 38.5% and 94.7% lower than that of SSA LIGBT and conventional LIGBT, respectively.
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    [1]

    Sakurai N, Mori M, Yatsuo T 1990 Proceedings of the 2nd International Symposium on Power Semiconductor Devices and ICs Tokyo, Japan, April 4–6, 1990 p66

    [2]

    Disney D, Letavic T, Trajkovic T, Terashima T, Nakagawa A 2017 IEEE T. Electron Dev. 64 659Google Scholar

    [3]

    Letavic T, Petruzzello J, Claes J, Eggenkamp P, Janssen E, van der Wal A 2006 IEEE International Symposium on Power Semiconductor Devices and IC's Naples, Italy, June 4–8, 2006 p1

    [4]

    Gu Y, Ma J, Zhang L, Wei J X, Li S, Liu S Y, Zhang S, Zhu J, Sun W F 2024 IEEE T. Electron Dev. 71 381Google Scholar

    [5]

    Hara K, Wada S, Sakano J, Oda T, Sakurai K, Yamashita H, Utsumi T 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's Waikoloa, Hawaii, USA, June 15–19, 2014 p418

    [6]

    Gough P A, Simpson M R, Rumennik V 1986 International Electron Devices Meeting Los Angeles, CA, USA, December 7–10, 1986 p218

    [7]

    Sin J K O, Mukherjee S 1991 IEEE Electron Dev. Lett. 12 45Google Scholar

    [8]

    Duan S, Qiao M, Mao K, Zhong B, Jiang L, Zhang B 2010 IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, November 1–4, 2010 p897

    [9]

    Simpson M R 1991 IEEE T. Electron Dev. 38 1633Google Scholar

    [10]

    Chen W S, Zhang B, Li Z J 2010 IEEE Electron Dev. Lett. 31 467Google Scholar

    [11]

    Sun L C, Duan B X, Yang Y T 2021 IEEE T. Electron Dev. 68 2408Google Scholar

    [12]

    Chul J H, Byeon D S, Oh J K, Han M K, Choi Proc Y I 2002 12th International Symposium on Power Semiconductor Devices & ICs Toulouse, France, May 22–25, 2002 p149

    [13]

    Zhu J, Zhang L, Sun W F, Chen M, Zhou F, Zhao M N, Shi L X, Gu Y, Zhang S 2016 IEEE T. Electron Dev. 63 2003Google Scholar

    [14]

    Huang L H, Luo X R, Wei J, Zhou K, Deng G Q, Sun T, Ouyang D F, Fan D, Zhang B 2017 IEEE T. Electron Dev. 64 3961Google Scholar

    [15]

    Hardikar S, Tadikonda R, Sweet M, Vershinin K, Narayanan E M S 2003 IEEE Electron Dev. Lett. 24 701Google Scholar

    [16]

    Sun L C, Duan B X, Wang Y D, Yang Y T 2019 IEEE T. Electron Dev. 66 2675Google Scholar

    [17]

    Duan B X, Sun L C, Yang Y T 2019 IEEE Electron Dev. Lett. 40 63Google Scholar

    [18]

    Liu S Y, Zhang Y, Zhang Z J, Inuishi M 2022 6th IEEE Electron Devices Technology & Manufacturing Conference Oita, Japan, March 6–9, 2022 p204

    [19]

    Xia Y, Chen W J, Liu C, Sun R Z, Li Z J, Zhang B Zhang 2022 IEEE T. Electron Dev. 69 6956Google Scholar

    [20]

    夏庆锋 2007 硕士学位论文 (杭州: 浙江大学)

    Xia Q F 2007 M. S. Thesis (Hangzhou: Zhejiang University

    [21]

    Bruel M, Aspar B, Charlet B, Maleville C, Poumeyrol T, Soubie A, Auberton-Herve A J, Lamure J M, Barge T, Metral F, Trucchi S 1995 IEEE International SOI Conference Proceedings Tucson, AZ, USA, October 3–5, 1995 p178

  • 图 1  (a) ES LIGBT的横截面示意图; (b) SSA LIGBT的横截面示意图; (c) EG结构示意图; (d) EG结构电势分布图(在正向导通状态下)

    Figure 1.  Schematic cross-section of (a) ES LIGBT and (b) SSA LIGBT; (c) schematic diagram of EG structure; (d) potential distribution of EG structure (in the forward conduction state).

    图 2  ES LIGBT的关键工艺流程图 (a)准备双层SOI晶圆; (b)刻蚀; (c)扩散形成P-base和N-buffer; (d)离子注入形成阳极结构和阴极结构; (e)对顶层硅进行离子注入; (f)金属化, 形成电极

    Figure 2.  Key process flow to fabricate ES LIGBT: (a) Preparing the double SOI wafer; (b) etching; (c) diffusion to form P-base and N-buffer; (d) ion implantation to form an anode structure and a cathode structure; (e) ion implantation of the top layer silicon; (f) metallization to form electrodes.

    图 3  (a) LIGBT的击穿特性, 插图为击穿时所提出的ES LIGBT的总电流密度, 其中JAC是阳极电流密度, VAC是阳极和阴极之间的电压; (b) Ntop对ES LIGBT击穿电压的影响

    Figure 3.  (a) Breakdown characteristics for LIGBTs. The inset is the total current density of the proposed ES LIGBT at the time of breakdown, JAC is the anode current density and VAC is the voltage between the anode and cathode. (b) Impact of Ntop on BV for the ES LIGBT.

    图 4  (a) 器件的正向导通特性; (b) ES LIGBT在正向导通状态(JAC = 100 A/cm2)下的电子密度分布

    Figure 4.  (a) Forward conduction characteristics of these devices; (b) electron density distribution of ES LIGBT in the forward conduction state (at JAC = 100 A/cm2).

    图 5  (a) 反向恢复特性的仿真测试, 其中VG是栅极电压, 栅极电阻RG = 10 Ω, 杂散电感Ls = 10 μH, 负载电感LC = 10 mH, 直流电源电压VCC = 100 V; (b) ES LIGBT和SSA LIGBTs的反向导通特性和反向恢复特性; (c) 反向恢复过程中不同时刻t1t5的空穴密度分布

    Figure 5.  (a) Simulation test circuit for reverse recovery characteristics, where VG is the gate voltage, gate resistance RG = 10 Ω, stray inductance Ls = 10 μH, load inductance LC = 10 mH, and dc power supply voltage VCC = 100 V; (b) RC and reverse recovery characteristics of ES LIGBT and SSA LIGBTs; (c) hole density distribution at different moment (t1t5) of reverse recovery process.

    图 6  (a) LIGBTs的关断特性; (b) 关断过程中不同时刻(t1t5)的空穴密度分布

    Figure 6.  (a) Turn-off characteristics of LIGBTs; (b) hole density distribution at different moment (t1t5) of turn-off process.

    图 7  在关断过程中, ES LIGBT和SSA LIGBT的阳极电流成分, 其中IACe是阳极的电子电流, IACh是阳极的空穴电流, IAC是阳极总电流

    Figure 7.  Anode current components of ES LIGBT and SSA LIGBT during the turn-off, IACe is the electron current of the anode, IACh is the hole current of the anode, and IAC is the total current of the anode.

    图 8  LA对提出的ES LIGBT性能的影响

    Figure 8.  Influence of LA on the performance of the proposed ES LIGBT.

    图 9  LIGBTs的EoffVon折衷关系

    Figure 9.  Eoff and Von tradeoff relationship for these LIGBTs

    表 1  仿真中的关键参数

    Table 1.  Key parameters used in simulation.

    参数符号 参数含义 常规LIGBT SSA LIGBT ES LIGBT
    Ld/μm 漂移区长度 15 15 15
    Tbox/μm 埋氧层厚度 3 3 3
    Tox/nm 栅氧化层厚度 50 50 50
    Tn/μm 漂移区厚度 4 4 4
    LA/μm P+阳极和N+阳极间长度 15 2
    Ttop/μm 顶层硅栅厚度 1
    Ndrift/(1014 cm–3) 漂移区掺杂浓度 18 18 1
    Nsubstrate/(1014 cm–3) P型衬底掺杂浓度 1 1 1
    Nbuffer/(1017 cm–3) N型缓冲层掺杂浓度 2 2 2
    Np-anode/(1019 cm–3) P+阳极掺杂浓度 5 5 5
    Ntop/(1015 cm–3) 顶层N型硅区掺杂浓度 9.1
    Nbarrier/(1018 cm–3) 顶层N型势垒层掺杂浓度 5
    DownLoad: CSV
  • [1]

    Sakurai N, Mori M, Yatsuo T 1990 Proceedings of the 2nd International Symposium on Power Semiconductor Devices and ICs Tokyo, Japan, April 4–6, 1990 p66

    [2]

    Disney D, Letavic T, Trajkovic T, Terashima T, Nakagawa A 2017 IEEE T. Electron Dev. 64 659Google Scholar

    [3]

    Letavic T, Petruzzello J, Claes J, Eggenkamp P, Janssen E, van der Wal A 2006 IEEE International Symposium on Power Semiconductor Devices and IC's Naples, Italy, June 4–8, 2006 p1

    [4]

    Gu Y, Ma J, Zhang L, Wei J X, Li S, Liu S Y, Zhang S, Zhu J, Sun W F 2024 IEEE T. Electron Dev. 71 381Google Scholar

    [5]

    Hara K, Wada S, Sakano J, Oda T, Sakurai K, Yamashita H, Utsumi T 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's Waikoloa, Hawaii, USA, June 15–19, 2014 p418

    [6]

    Gough P A, Simpson M R, Rumennik V 1986 International Electron Devices Meeting Los Angeles, CA, USA, December 7–10, 1986 p218

    [7]

    Sin J K O, Mukherjee S 1991 IEEE Electron Dev. Lett. 12 45Google Scholar

    [8]

    Duan S, Qiao M, Mao K, Zhong B, Jiang L, Zhang B 2010 IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, November 1–4, 2010 p897

    [9]

    Simpson M R 1991 IEEE T. Electron Dev. 38 1633Google Scholar

    [10]

    Chen W S, Zhang B, Li Z J 2010 IEEE Electron Dev. Lett. 31 467Google Scholar

    [11]

    Sun L C, Duan B X, Yang Y T 2021 IEEE T. Electron Dev. 68 2408Google Scholar

    [12]

    Chul J H, Byeon D S, Oh J K, Han M K, Choi Proc Y I 2002 12th International Symposium on Power Semiconductor Devices & ICs Toulouse, France, May 22–25, 2002 p149

    [13]

    Zhu J, Zhang L, Sun W F, Chen M, Zhou F, Zhao M N, Shi L X, Gu Y, Zhang S 2016 IEEE T. Electron Dev. 63 2003Google Scholar

    [14]

    Huang L H, Luo X R, Wei J, Zhou K, Deng G Q, Sun T, Ouyang D F, Fan D, Zhang B 2017 IEEE T. Electron Dev. 64 3961Google Scholar

    [15]

    Hardikar S, Tadikonda R, Sweet M, Vershinin K, Narayanan E M S 2003 IEEE Electron Dev. Lett. 24 701Google Scholar

    [16]

    Sun L C, Duan B X, Wang Y D, Yang Y T 2019 IEEE T. Electron Dev. 66 2675Google Scholar

    [17]

    Duan B X, Sun L C, Yang Y T 2019 IEEE Electron Dev. Lett. 40 63Google Scholar

    [18]

    Liu S Y, Zhang Y, Zhang Z J, Inuishi M 2022 6th IEEE Electron Devices Technology & Manufacturing Conference Oita, Japan, March 6–9, 2022 p204

    [19]

    Xia Y, Chen W J, Liu C, Sun R Z, Li Z J, Zhang B Zhang 2022 IEEE T. Electron Dev. 69 6956Google Scholar

    [20]

    夏庆锋 2007 硕士学位论文 (杭州: 浙江大学)

    Xia Q F 2007 M. S. Thesis (Hangzhou: Zhejiang University

    [21]

    Bruel M, Aspar B, Charlet B, Maleville C, Poumeyrol T, Soubie A, Auberton-Herve A J, Lamure J M, Barge T, Metral F, Trucchi S 1995 IEEE International SOI Conference Proceedings Tucson, AZ, USA, October 3–5, 1995 p178

  • [1] Duan Bao-Xing, Liu Yu-Lin, Tang Chun-Ping, Yang Yin-Tang. Novel majority carrier accumulation insulated gate bipolar transistor with Schottky junction. Acta Physica Sinica, 2024, 73(7): 078501. doi: 10.7498/aps.73.20231768
    [2] Gou Shi-Long, Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Sheng Jiang-Kun, Xue Yuan-Yuan, Pan Chen. Radiation mechanism of gate-controlled lateral PNP bipolar transistors in the hydrogen environment. Acta Physica Sinica, 2021, 70(15): 156101. doi: 10.7498/aps.70.20210351
    [3] Lu Chao, Chen Wei, Luo Yin-Hong, Ding Li-Li, Wang Xun, Zhao Wen, Guo Xiao-Qiang, Li Sai. Effect of source-drain conduction in single-event transient on nanoscaled bulk fin field effect transistor. Acta Physica Sinica, 2020, 69(8): 086101. doi: 10.7498/aps.69.20191896
    [4] Zhang Jin-Feng, Yang Peng-Zhi, Ren Ze-Yang, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Xu Lei, Hao Yue. Characterization of high-transconductance long-channel hydrogen-terminated polycrystal diamond field effect transistor. Acta Physica Sinica, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [5] Zhou Hang, Zheng Qi-Wen, Cui Jiang-Wei, Yu Xue-Feng, Guo Qi, Ren Di-Yuan, Yu De-Zhao, Su Dan-Dan. Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect. Acta Physica Sinica, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [6] Tan Ji, Zhu Yang-Jun, Lu Shuo-Jin, Tian Xiao-Li, Teng Yuan, Yang Fei, Zhang Guang-Yin, Shen Qian-Xing. Modeling and simulation of the insulated gate bipolar transistor turn-off voltage slope under inductive load. Acta Physica Sinica, 2016, 65(15): 158501. doi: 10.7498/aps.65.158501
    [7] Liu Xiang-Yu, Hu Hui-Yong, Zhang He-Ming, Xuan Rong-Xi, Song Jian-Jun, Shu Bin, Wang Bin, Wang Meng. Study on the strained SiGe p-channel metal-oxide-semiconductor field-effect transistor with polycrystalline silicon germanium gate threshold voltage. Acta Physica Sinica, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [8] Ma Wu-Ying, Wang Zhi-Kuan, Lu Wu, Xi Shan-Bin, Guo Qi, He Cheng-Fa, Wang Xin, Liu Mo-Han, Jiang Ke. The base current broadening effect and charge separation method of gate-controlled lateral PNP bipolar transistors. Acta Physica Sinica, 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [9] Hu Hui-Yong, Liu Xiang-Yu, Lian Yong-Chang, Zhang He-Ming, Song Jian-Jun, Xuan Rong-Xi, Shu Bin. Study on the influence of γ -ray total dose radiation effect on the threshold voltage and transconductance of the strained Si p-channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [10] Huo Wen-Juan, Xie Hong-Yun, Liang Song, Zhang Wan-Rong, Jiang Zhi-Yun, Chen Xiang, Lu Dong. Uni-traveling-carrier double heterojunction phototransistor photodetector. Acta Physica Sinica, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [11] You Hai-Long, Lan Jian-Chun, Fan Ju-Ping, Jia Xin-Zhang, Zha Wei. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave. Acta Physica Sinica, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [12] Liu Ya-Qiang, An Zhen-Lian, Cang Jun, Zhang Ye-Wen, Zheng Fei-Hu. Influence of fluorination time on surface charge accumulation on epoxy resin insulation. Acta Physica Sinica, 2012, 61(15): 158201. doi: 10.7498/aps.61.158201
    [13] Xi Shan-Bin, Lu Wu, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing, Wu Xue. Quantitative separation of radiation induced charges for gate controlled later PNP bipolar transistors. Acta Physica Sinica, 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [14] Xi Shan-Bin, Lu Wu, Wang Zhi-Kuan, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing. Use the subthreshold-current technique to separate radiation induced defects in gate controlled lateral pnp bipolar transistors. Acta Physica Sinica, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [15] Chen Jian-Jun, Chen Shu-Ming, Liang Bin, Liu Bi-Wei, Chi Ya-Qing, Qin Jun-Rui, He Yi-Bai. Influence of interface traps of p-type metal-oxide-semiconductor field effect transistor on single event charge sharing collection. Acta Physica Sinica, 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [16] Wang Jin-Ping, Xu Jian-Ping, Xu Yang-Jun. Analysis of multi-switching period oscillation phenomenon in constant on-time controlled buck converter. Acta Physica Sinica, 2011, 60(5): 058401. doi: 10.7498/aps.60.058401
    [17] Liu Yu-Rong, Chen Wei, Liao Rong. Low-operating-voltage polymer thin-film transistors based on poly(3-hexylthiophene). Acta Physica Sinica, 2010, 59(11): 8088-8092. doi: 10.7498/aps.59.8088
    [18] Liu Hong-Xia, Yin Xiang-Kun, Liu Bing-Jie, Hao Yue. Threshold voltage analytic model for strained SiGe-on-insulator p-channel metal-oxide-semiconductor-field-effect-transistor. Acta Physica Sinica, 2010, 59(12): 8877-8882. doi: 10.7498/aps.59.8877
    [19] Tang Xiao-Yan, Zhang Yi-Men, Zhang Yu-Ming. . Acta Physica Sinica, 2002, 51(4): 771-775. doi: 10.7498/aps.51.771
    [20] REN HONG-XIA, HAO YUE, XU DONG-GANG. STUDY ON HOT-CARRIER-EFFECT FOR GROOVED-GATE N-CHANNEL METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT-TRANSISTOR. Acta Physica Sinica, 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
Metrics
  • Abstract views:  1261
  • PDF Downloads:  31
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2024
  • Accepted Date:  27 May 2024
  • Available Online:  21 June 2024
  • Published Online:  05 August 2024

/

返回文章
返回