Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controllable growth and electronic phase transitions for metastable perovskite rare-earth nickelate films

Zhou Xuan-Chi Jiao Yong-Jie

Citation:

Controllable growth and electronic phase transitions for metastable perovskite rare-earth nickelate films

Zhou Xuan-Chi, Jiao Yong-Jie
cstr: 32037.14.aps.73.20240584
PDF
HTML
Get Citation
  • The multiple electronic phase transition achieved in the metastable perovskite (ReNiO3, where Re denotes a lanthanide rare-earth element) by using critical temperature, hydrogenation, electrical field and interfacial strain has attracted considerable attention in condensed matter physics and materials science, making it promising applications in the critical temperature thermistor, artificial intelligence, energy conversion and weak electric field sensing. Nevertheless, the above abundant applications are still bottlenecked by the intrinsically thermodynamic metastability related to ReNiO3. Herein, we synthesize the atomic-level flat ReNiO3 film material with thermodynamic metastability using laser molecular beam epitaxy (LMBE) that exhibits excellent thermally-driven electronic phase transitions. Notably, the interfacial heterogeneous nucleation of ReNiO3 film can be triggered by the template effect of (001)-oriented LaAlO3 substrates, owing to the similar lattice constants between LaAlO3 substrate and ReNiO3 film. In addition, we elucidate the key role of in situ annealing under oxygen-enriched atmosphere in stabilizing the distorted perovskite structure related to ReNiO3. Apart from the depositing process related to LMBE, the ReNiO3 with heavy rare-earth composition exhibits a more distorted NiO6 octahedron and a higher Gibbs free energy that is rather difficult to synthesize by using physical vacuum deposition. As a representative case, the in situ annealing-assisted LMBE process cannot be utilized to deposit the SmNiO3 film, in which the impurity peaks related to Re2O3 and NiO are observed in its XRD spectra. With the assistance of X-ray photoelectron spectraoscopy and near-edge X-ray absorption fine structure, the valence state of nickel for ReNiO3 is found to be +3, and the $t_{2{\mathrm{g}}}^6e_{\mathrm{g}}^1 $ configuration is observed. Considering the highly tunable electronic orbital configuration of ReNiO3 related to the NiO6 octahedron, co-occupying the A-site of perovskite structure with Nd and Sm elements regulates the transition temperature (TMIT) for ReNiO3 within a broad temperature range. Furthermore, we demonstrate the anisotropy in the electronic phase transitions for Nd1–xSmxNiO3, in which case the TMIT achieved in the Nd1–xSmxNiO3/LaAlO3 (111) heterostructure exceeds the one deposited on the (001)-oriented LaAlO3 substrate. The presently observed anisotropy in the electrical transportation for Nd1–xSmxNiO3 film material is related to the anisotropic in-plane NiO6 octahedron configuration triggered by differently oriented LaAlO3 substrates. The present work is expected to introduce a new degree of freedom to regulate the electronic phase transition, explore new electronic phase in ReNiO3 material system, and pave the way for growing atomic-level flat ReNiO3 film materials with expected electronic phase transitions.
      Corresponding author: Zhou Xuan-Chi, xuanchizhou@sxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52401240, 12174237) and the Open Project of Tianjin Key Laboratory of Optoelectronic Detection Technology and System, China (Grant No. 2024LODTS102).
    [1]

    Ding X, Tam C C, Sui X L, Zhao Y, Xu M H, Choi J, Leng H Q, Zhang J, Wu M, Xiao H Y, Zu X T, Garcia-Fernandez M, Agrestini S, Wu X Q, Wang Q Y, Gao P, Li S A, Huang B, Zhou K J, Qiao L 2023 Nature 615 50Google Scholar

    [2]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402Google Scholar

    [3]

    Vistoli L, Wang W B, Sander A, Zhu Q X, Casals B, Cichelero R, Barthélémy A, Fusil S, Herranz G, Valencia S, Abrudan R, Weschke E, Nakazawa K, Kohno H, Santamaria J, Wu W D, Garcia V, Bibes M 2019 Nat. Phys. 15 67Google Scholar

    [4]

    周轩弛, 李海帆 2024 物理学报 73 117102Google Scholar

    Zhou X C, Li H F 2024 Acta Phys. Sin. 73 117102Google Scholar

    [5]

    Zhou X C, Shang Y L, Gu Z J, Jiang G Z, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N F, Chen J K 2024 Appl. Phys. Lett. 124 082103Google Scholar

    [6]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y C, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [7]

    Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y B, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G, Schmitt T 2016 Nat. Commun. 7 13017Google Scholar

    [8]

    Domínguez C, Georgescu A B, Mundet B, Zhang Y J, Fowlie J, Mercy A, Waelchli A, Catalano S, Alexander D T L, Ghosez P, Georges A, Millis A J, Gibert M, Triscone J M 2020 Nat. Mater. 19 1182Google Scholar

    [9]

    Song Q, Doyle S, Pan G A, El Baggari I, Segedin D F, Carrizales D C, Nordlander J, Tzschaschel C, Ehrets J R, Hasan Z, El-Sherif H, Krishna J, Hanson C, LaBollita H, Bostwick A, Jozwiak C, Rotenberg E, Xu S Y, Lanzara A, N'Diaye A T, Heikes C A, Liu Y H, Paik H, Brooks C M, Pamuk B, Heron J T, Shafer P, Ratcliff W D, Botana A S, Moreschini L, Mundy J A 2023 Nat. Phys. 19 522Google Scholar

    [10]

    Zhang H T, Park T J, Islam A, Tran D S J, Manna S, Wang Q, Mondal S, Yu H M, Banik S, Cheng S B, Zhou H, Gamage S, Mahapatra S, Zhu Y M, Abate Y, Jiang N, Sankaranarayanan S, Sengupta A, Teuscher C, Ramanathan S 2022 Science 375 533Google Scholar

    [11]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860Google Scholar

    [12]

    Shi J, Ha S D, Zhou Y, Schoofs F, Ramanathan S 2013 Nat. Commun. 4 2676Google Scholar

    [13]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J M 2010 Adv. Mater. 22 5517Google Scholar

    [14]

    Phillips P J, Rui X, Georgescu A B, Disa A S, Longo P, Okunishi E, Walker F, Ahn C H, Ismail-Beigi S, Klie R F 2017 Phys. Rev. B 95 205131Google Scholar

    [15]

    Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101663Google Scholar

    [16]

    Zhao D L, Cong M, Liu Z, Ma Z W, Wang K, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101445Google Scholar

    [17]

    Shi Y, Zhao W Y, Ma Z W, Xiao G J, Zou B 2021 Chem. Sci. 12 14711Google Scholar

    [18]

    Zhou X C, Li H F, Jiao Y J, Zhou G W, Ji H H, Jiang Y, Xu X H 2024 Adv. Funct. Mater. 34 2316536Google Scholar

    [19]

    Zhang H T, Park T J, Zaluzhnyy I A, Wang Q, Wadekar S N, Manna S, Andrawis R, Sprau P O, Sun Y F, Zhang Z, Huang C Z, Zhou H, Zhang Z, Narayanan B, Srinivasan G, Hua N, Nazaretski E, Huang X J, Yan H F, Ge M Y, Chu Y S, Cherukara M J, Holt M V, Krishnamurthy M, Shpyrko O G, Sankaranarayanan S, Frano A, Roy K, Ramanathan S 2020 Nat. Commun. 11 2245Google Scholar

    [20]

    Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland J W, Li J R, Sutarto R, He F Z, Wu C Z, Zhu J X, Sun Y F, Ramadoss K, Nonnenmann S S, Yu N F, Comin R, Rabe K M, Sankaranarayanan S, Ramanathan S 2018 Nature 553 68Google Scholar

    [21]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231Google Scholar

    [22]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [23]

    Mattoni G, Zubko P, Maccherozzi F, van der Torren A J H, Boltje D B, Hadjimichael M, Manca N, Catalano S, Gibert M, Liu Y, Aarts J, Triscone J M, Dhesi S S, Caviglia A D 2016 Nat. Commun. 7 13141Google Scholar

    [24]

    Zhou X C, Li H F, Meng F Q, Mao W, Wang J O, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N F, Chen J K 2022 J. Phys. Chem. Lett. 13 8078Google Scholar

    [25]

    Zhou X C, Cui Y C, Shang Y L, Li H F, Wang J O, Meng Y, Xu X, Jiang Y, Chen N F, Chen J K 2023 J. Phys. Chem. C 127 2639Google Scholar

    [26]

    Zhou X C, Li H F, Shang Y L, Meng F Q, Li Z A, Meng K K, Wu Y, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Phys. Chem. Chem. Phys. 25 21908Google Scholar

    [27]

    Zhou X C, Jiao Y J, Li H F 2024 Appl. Phys. Lett. 125 032103Google Scholar

    [28]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336Google Scholar

    [29]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys. 81 046501Google Scholar

    [30]

    Nikulin I V, Novojilov M A, Kaul A R, Mudretsova S N, Kondrashov S V 2004 Mater. Res. Bull. 39 775Google Scholar

    [31]

    Escote M T, da Silva A M L, Matos J R, Jardim R F 2000 J. Solid State Chem. 151 298Google Scholar

    [32]

    Chen X G, Zhang X, Koten M A, Chen H H, Xiao Z Y, Zhang L, Shield J E, Dowben P A, Hong X 2017 Adv. Mater. 29 1701385Google Scholar

    [33]

    Hadjimichael M, Mundet B, Domínguez C, Waelchli A, De Luca G, Spring J, Jöhr S, Walker S M, Piamonteze C, Alexander D T L, Triscone J M, Gibert M 2023 Adv. Electron. Mater. 9 2201182Google Scholar

    [34]

    Demazeau G, Marbeuf A, Pouchard M, Hagenmuller P 1971 J. Solid State Chem. 3 582Google Scholar

    [35]

    Chen J K, Li Z A, Dong H L, Xu J N, Wang V, Feng Z J, Chen Z Q, Chen B, Chen N F, Mao H K 2020 Adv. Funct. Mater. 30 2000987Google Scholar

    [36]

    Chen J K, Hu H Y, Wang J O, Yajima T, Ge B H, Ke X Y, Dong H L, Jiang Y, Chen N F 2019 Mater. Horiz. 6 788Google Scholar

    [37]

    Chen J H, Chen J K, Ren Z Y, Zhao D D, Wang M X, Miao J, Xu X G, Jiang Y, Chen N F 2021 J. Rare Earths 39 174Google Scholar

    [38]

    Zhou X C, Wu Y, Yan F B, Zhang T Z, Ke X Y, Meng K K, Xu X G, Li Z P, Miao J, Chen J K, Jiang Y 2021 Ceram. Int. 47 25574Google Scholar

    [39]

    Catalan G 2008 Phase Transit. 81 729Google Scholar

    [40]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416Google Scholar

    [41]

    Zhong J, Li Z, Zheng Y Q, Jiang P H, Zhang F, Zhang T, Cui Y C, Zhong Z C, Chen N F, Chen J K 2023 J. Am. Ceram. Soc. 106 5067Google Scholar

    [42]

    Chen J K, Hu H Y, Meng F Q, Yajima T, Yang L X, Ge B H, Ke X Y, Wang J O, Jiang Y, Chen N F 2020 Matter 2 1296Google Scholar

  • 图 1  稀土镍酸盐(ReNiO3)的电子相变特性 (a) ReNiO3的晶体结构及 ReNiO3绝缘相的电子结构和扭曲的NiO6八面体; (b) ReNiO3TMIT随其扭曲钙钛矿结构容忍因子的变化; (c) 温度为1100 K时ReNiO3的吉布斯自由能(ΔG)随稀土离子半径的变化

    Figure 1.  Electronic phase transitions for rare-earth nickelates (ReNiO3): (a) Crystal structure for ReNiO3 and the electronic structure and distorted NiO6 octahedron for the insulating phase of ReNiO3; (b) transition temperature (TMIT) for ReNiO3 plotted as a function of the tolerance factor of distorted perovskite structure; (c) Gibbs free energy (ΔG) for ReNiO3 plotted as a function of the ionic radius of Re elements at 1100 K.

    图 2  揭示高氧压原位退火在沉积ReNiO3薄膜中的关键作用 (a) 未经原位退火、经原位退火及放置空气中4个月后NdNiO3的X射线衍射图谱(XRD); (b) 经原位退火NdNiO3薄膜的原子力显微镜(AFM)图; (c) 原位退火、放置于空气中4个月及未经原位退火NdNiO3的阻温特性曲线(ρ-T曲线); (d) 原位退火及未经原位退火NdNiO3的电阻温度系数与温度的变化关系图(TCR -T曲线), 插图为本工作制备的NdNiO3薄膜的归一化特性曲线与文献[36]的对比图

    Figure 2.  Revealing the critical role of in situ annealing upon high oxygen pressure in depositing the ReNiO3 film material: (a) X-ray diffraction for the as-deposited NdNiO3 film before and after in-situ annealing and exposed to the air for 4 months; (b) image of atomic force microscope for NdNiO3 film upon in-situ annealing; (c) resistance temperature characteristic curves (ρ-T tendency) of NdNiO3 after in-situ annealing, 4 months in air, and without in-situ annealing; (d) temperature dependance of the temperature coefficient of resistance (TCR) for the NdNiO3 film before and after in-situ annealing, while the normalized ρ-T tendency for as-deposited NdNiO3 film as compared for the previously reported one were shown in the inset [36].

    图 3  所制备NdNiO3薄膜的X射线光电子能谱(XPS) (a) Ni-2p核心能级, (b) O-1s核心能级. 所制备NdNiO3薄膜的同步辐射X射线近边吸收谱(NEXAFS) (c) Ni-L边, (d) O-K边

    Figure 3.  X-ray photoelectron spectroscopy (XPS) for NdNiO3 film: (a) Ni-2p core-level peak; (b) O-1s core-level peak. Near-edge X-ray absorption fine structure (NEXAFS) for NdNiO3 film: (c) Ni-L edge, (d) O-K edge.

    图 4  Nd1–xSmxNiO3薄膜的晶体结构和电子相变特性 (a) Nd1–xSmxNiO3 (x = 0, 0.25, 0.5) 薄膜的XRD图谱, 插图为Nd1–xSmxNiO3 (x = 0.75, 1) 薄膜的XRD图谱; (b) Nd1–xSmxNiO3 (x = 0, 0.25, 0.5) 薄膜c轴晶格参数随A位Sm元素共占据比例的变化关系图; (c) Nd1–xSmxNiO3 (x = 0, 0.25)薄膜的阻温特性曲线; (d) Nd1–xSmxNiO3 (x = 0, 0.25) 薄膜的相变温度随A位Sm元素共占据比例的变化关系图, 插图为Nd1–xSmxNiO3 (x = 0, 0.25, 0.5) 薄膜的TCR-T曲线

    Figure 4.  Crystal structure and electronic phase transition for Nd1–xSmxNiO3 film material: (a) The XRD spectra for as-deposited Nd1–xSmxNiO3 films (x = 0, 0.25, 0.5), while the XRD spectra for as-deposited Nd1–xSmxNiO3 films (x = 0.75, 1) was shown in the inset; (b) the c-axis lattice constant for Nd1–xSmxNiO3 (x = 0, 0.25, 0.5) films plotted as a function of Sm substituting concentration; (c) the ρ-T tendency for Nd1–xSmxNiO3 films (x = 0, 0.25); (d) TMIT for as-grown Nd1–xSmxNiO3 (x = 0, 0.25) films plotted as a function of Sm substituting concentration; while the TCR-T tendency as achieved in the Nd1–xSmxNiO3 (x = 0, 0.25, 0.5) film was shown in the inset.

    图 5  Nd1–xSmxNiO3电输运特性的各向异性 (a) 不同取向NdNiO3薄膜的XRD图谱; (b)不同取向 NdNiO3的归一化阻温特性曲线; (c) NdNiO3相变温度随晶体学取向的变化关系图, 插图中为NdNiO3/LAO(111)异质结的AFM图; (d) 不同取向Nd1–xSmxNiO3薄膜的归一化阻温特性曲线, 插图为其XRD图谱

    Figure 5.  Anisotropy in the electrical transport properties for Nd1–xSmxNiO3: (a) XRD spectra for differently oriented NdNiO3 films; (b) the normalized ρ-T tendency for differently oriented NdNiO3 films; (c) TMIT for NdNiO3 films plotted as a function of crystallographic orientation, while the respective AFM spectra of NdNiO3/LAO (111) heterostructure was shown in the inset; (d) the normalized ρ-T tendency for differently oriented Nd1–xSmxNiO3 films, while the respective XRD spectra are shown in the inset.

  • [1]

    Ding X, Tam C C, Sui X L, Zhao Y, Xu M H, Choi J, Leng H Q, Zhang J, Wu M, Xiao H Y, Zu X T, Garcia-Fernandez M, Agrestini S, Wu X Q, Wang Q Y, Gao P, Li S A, Huang B, Zhou K J, Qiao L 2023 Nature 615 50Google Scholar

    [2]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402Google Scholar

    [3]

    Vistoli L, Wang W B, Sander A, Zhu Q X, Casals B, Cichelero R, Barthélémy A, Fusil S, Herranz G, Valencia S, Abrudan R, Weschke E, Nakazawa K, Kohno H, Santamaria J, Wu W D, Garcia V, Bibes M 2019 Nat. Phys. 15 67Google Scholar

    [4]

    周轩弛, 李海帆 2024 物理学报 73 117102Google Scholar

    Zhou X C, Li H F 2024 Acta Phys. Sin. 73 117102Google Scholar

    [5]

    Zhou X C, Shang Y L, Gu Z J, Jiang G Z, Ozawa T, Mao W, Fukutani K, Matsuzaki H, Jiang Y, Chen N F, Chen J K 2024 Appl. Phys. Lett. 124 082103Google Scholar

    [6]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y C, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [7]

    Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y B, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G, Schmitt T 2016 Nat. Commun. 7 13017Google Scholar

    [8]

    Domínguez C, Georgescu A B, Mundet B, Zhang Y J, Fowlie J, Mercy A, Waelchli A, Catalano S, Alexander D T L, Ghosez P, Georges A, Millis A J, Gibert M, Triscone J M 2020 Nat. Mater. 19 1182Google Scholar

    [9]

    Song Q, Doyle S, Pan G A, El Baggari I, Segedin D F, Carrizales D C, Nordlander J, Tzschaschel C, Ehrets J R, Hasan Z, El-Sherif H, Krishna J, Hanson C, LaBollita H, Bostwick A, Jozwiak C, Rotenberg E, Xu S Y, Lanzara A, N'Diaye A T, Heikes C A, Liu Y H, Paik H, Brooks C M, Pamuk B, Heron J T, Shafer P, Ratcliff W D, Botana A S, Moreschini L, Mundy J A 2023 Nat. Phys. 19 522Google Scholar

    [10]

    Zhang H T, Park T J, Islam A, Tran D S J, Manna S, Wang Q, Mondal S, Yu H M, Banik S, Cheng S B, Zhou H, Gamage S, Mahapatra S, Zhu Y M, Abate Y, Jiang N, Sankaranarayanan S, Sengupta A, Teuscher C, Ramanathan S 2022 Science 375 533Google Scholar

    [11]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860Google Scholar

    [12]

    Shi J, Ha S D, Zhou Y, Schoofs F, Ramanathan S 2013 Nat. Commun. 4 2676Google Scholar

    [13]

    Scherwitzl R, Zubko P, Lezama I G, Ono S, Morpurgo A F, Catalan G, Triscone J M 2010 Adv. Mater. 22 5517Google Scholar

    [14]

    Phillips P J, Rui X, Georgescu A B, Disa A S, Longo P, Okunishi E, Walker F, Ahn C H, Ismail-Beigi S, Klie R F 2017 Phys. Rev. B 95 205131Google Scholar

    [15]

    Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101663Google Scholar

    [16]

    Zhao D L, Cong M, Liu Z, Ma Z W, Wang K, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101445Google Scholar

    [17]

    Shi Y, Zhao W Y, Ma Z W, Xiao G J, Zou B 2021 Chem. Sci. 12 14711Google Scholar

    [18]

    Zhou X C, Li H F, Jiao Y J, Zhou G W, Ji H H, Jiang Y, Xu X H 2024 Adv. Funct. Mater. 34 2316536Google Scholar

    [19]

    Zhang H T, Park T J, Zaluzhnyy I A, Wang Q, Wadekar S N, Manna S, Andrawis R, Sprau P O, Sun Y F, Zhang Z, Huang C Z, Zhou H, Zhang Z, Narayanan B, Srinivasan G, Hua N, Nazaretski E, Huang X J, Yan H F, Ge M Y, Chu Y S, Cherukara M J, Holt M V, Krishnamurthy M, Shpyrko O G, Sankaranarayanan S, Frano A, Roy K, Ramanathan S 2020 Nat. Commun. 11 2245Google Scholar

    [20]

    Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland J W, Li J R, Sutarto R, He F Z, Wu C Z, Zhu J X, Sun Y F, Ramadoss K, Nonnenmann S S, Yu N F, Comin R, Rabe K M, Sankaranarayanan S, Ramanathan S 2018 Nature 553 68Google Scholar

    [21]

    Zhou Y, Guan X F, Zhou H, Ramadoss K, Adam S, Liu H J, Lee S, Shi J, Tsuchiya M, Fong D D, Ramanathan S 2016 Nature 534 231Google Scholar

    [22]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337Google Scholar

    [23]

    Mattoni G, Zubko P, Maccherozzi F, van der Torren A J H, Boltje D B, Hadjimichael M, Manca N, Catalano S, Gibert M, Liu Y, Aarts J, Triscone J M, Dhesi S S, Caviglia A D 2016 Nat. Commun. 7 13141Google Scholar

    [24]

    Zhou X C, Li H F, Meng F Q, Mao W, Wang J O, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N F, Chen J K 2022 J. Phys. Chem. Lett. 13 8078Google Scholar

    [25]

    Zhou X C, Cui Y C, Shang Y L, Li H F, Wang J O, Meng Y, Xu X, Jiang Y, Chen N F, Chen J K 2023 J. Phys. Chem. C 127 2639Google Scholar

    [26]

    Zhou X C, Li H F, Shang Y L, Meng F Q, Li Z A, Meng K K, Wu Y, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Phys. Chem. Chem. Phys. 25 21908Google Scholar

    [27]

    Zhou X C, Jiao Y J, Li H F 2024 Appl. Phys. Lett. 125 032103Google Scholar

    [28]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336Google Scholar

    [29]

    Catalano S, Gibert M, Fowlie J, Iñiguez J, Triscone J M, Kreisel J 2018 Rep. Prog. Phys. 81 046501Google Scholar

    [30]

    Nikulin I V, Novojilov M A, Kaul A R, Mudretsova S N, Kondrashov S V 2004 Mater. Res. Bull. 39 775Google Scholar

    [31]

    Escote M T, da Silva A M L, Matos J R, Jardim R F 2000 J. Solid State Chem. 151 298Google Scholar

    [32]

    Chen X G, Zhang X, Koten M A, Chen H H, Xiao Z Y, Zhang L, Shield J E, Dowben P A, Hong X 2017 Adv. Mater. 29 1701385Google Scholar

    [33]

    Hadjimichael M, Mundet B, Domínguez C, Waelchli A, De Luca G, Spring J, Jöhr S, Walker S M, Piamonteze C, Alexander D T L, Triscone J M, Gibert M 2023 Adv. Electron. Mater. 9 2201182Google Scholar

    [34]

    Demazeau G, Marbeuf A, Pouchard M, Hagenmuller P 1971 J. Solid State Chem. 3 582Google Scholar

    [35]

    Chen J K, Li Z A, Dong H L, Xu J N, Wang V, Feng Z J, Chen Z Q, Chen B, Chen N F, Mao H K 2020 Adv. Funct. Mater. 30 2000987Google Scholar

    [36]

    Chen J K, Hu H Y, Wang J O, Yajima T, Ge B H, Ke X Y, Dong H L, Jiang Y, Chen N F 2019 Mater. Horiz. 6 788Google Scholar

    [37]

    Chen J H, Chen J K, Ren Z Y, Zhao D D, Wang M X, Miao J, Xu X G, Jiang Y, Chen N F 2021 J. Rare Earths 39 174Google Scholar

    [38]

    Zhou X C, Wu Y, Yan F B, Zhang T Z, Ke X Y, Meng K K, Xu X G, Li Z P, Miao J, Chen J K, Jiang Y 2021 Ceram. Int. 47 25574Google Scholar

    [39]

    Catalan G 2008 Phase Transit. 81 729Google Scholar

    [40]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416Google Scholar

    [41]

    Zhong J, Li Z, Zheng Y Q, Jiang P H, Zhang F, Zhang T, Cui Y C, Zhong Z C, Chen N F, Chen J K 2023 J. Am. Ceram. Soc. 106 5067Google Scholar

    [42]

    Chen J K, Hu H Y, Meng F Q, Yajima T, Yang L X, Ge B H, Ke X Y, Wang J O, Jiang Y, Chen N F 2020 Matter 2 1296Google Scholar

  • [1] Yang Dong-Chao, Yi Li-Zhi, Ding Lin-Jie, Liu Min, Zhu Li-Ya, Xu Yun-Li, He Xiong, Shen Shun-Qing, Pan Li-Qing, John Q. Xiao. Nonequilibrium steady-state transport properties of magnons in ferromagnetic insulators. Acta Physica Sinica, 2024, 73(14): 147101. doi: 10.7498/aps.73.20240498
    [2] Zhou Xuan-Chi, Li Hai-Fan. Research on the electronic phase transitions in strongly correlated oxides and multi-field regulation. Acta Physica Sinica, 2024, 73(11): 117102. doi: 10.7498/aps.73.20240289
    [3] Lai Gan-Ping, Zhang Xiao-Wei. Simulation of lutetium metal evaporation with considering atomic metastable state. Acta Physica Sinica, 2023, 72(18): 184702. doi: 10.7498/aps.72.20230602
    [4] LI Ming,  JIN Pinshi,  CAO Xun. Current Research on Rare Earth Oxygenated Hydride Photochromic Films. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221046
    [5] Li Ming, Jin Ping-Shi, Cao Xun. Current research status of rare earth oxygenated hydride photochromic films. Acta Physica Sinica, 2022, 71(21): 218101. doi: 10.7498/aps.71.20221046
    [6] Fang Xiao-Nan, Wei Qin, Sui Na-Na, Kong Zhi-Yong, Liu Jing, Du Yan-Ling. Spacer-layer-tunable ferromagnetic half-metal-ferromagnetic insulator transition in SrVO3/SrTiO3 superlattice. Acta Physica Sinica, 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [7] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [8] Li Yun, Lu Wen-Jian. Tuning metal-insulator transition in δ-doped La:SrTiO3 superlattice by varying doping dimensionality and concentration. Acta Physica Sinica, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [9] Bao Ding-Hua. Research progress in rare earth doping photoluminescent ferroelectric thin films. Acta Physica Sinica, 2020, 69(12): 127712. doi: 10.7498/aps.69.20200738
    [10] Jiao Yuan-Yuan, Sun Jian-Ping, Prashant Shahi, Liu Zhe-Hong, Wang Bo-Sen, Long You-Wen, Cheng Jin-Guang. Effect of Pb doping on metallic state of cubic pyrochlore Cd2Ru2O7. Acta Physica Sinica, 2018, 67(12): 127402. doi: 10.7498/aps.67.20180343
    [11] Wang Ze-Lin, Zhang Zhen-Hua, Zhao Zhe, Shao Rui-Wen, Sui Man-Ling. Mechanism of electrically driven metal-insulator phase transition in vanadium dioxide nanowires. Acta Physica Sinica, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [12] He Long, Song Yun. Numerical study of the superconductor-insulator transition in double-layer graphene driven by disorder. Acta Physica Sinica, 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [13] Wang Chang-Lei, Tian Zhen, Xing Qi-Rong, Gu Jian-Qiang, Liu Feng, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy. Acta Physica Sinica, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [14] Peng Zhen-Sheng, Tang Yong-Gang, Yan Guo-Qing, Guo Huan-Yin, Mao Qiang. Peculiar transport properties and CMR effect of La0.67Sr0.08Na0.25MnO3. Acta Physica Sinica, 2007, 56(3): 1707-1712. doi: 10.7498/aps.56.1707
    [15] XU BEI-XUE, WU JUN-LEI, LIU WEI-MIN, YANY HAI, SHAO QING-YI, LIU SHENG, XUE ZENG-QUAN, WU QUAN-DE. ENHANCED PHOTOEMISSION FROM METAL NANOPARTICLE COMPOSITE THIN FILMS (Ag-BaO) DOPED WITH RARE-EARTH ELEMENTS . Acta Physica Sinica, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
    [16] HE JIE, XU ZHEN-JIA. A NEW REACTION MECHANISM——THE CONTACT REACTION OF LREM FILMS AND Si SUBSTRATE. Acta Physica Sinica, 1993, 42(10): 1617-1626. doi: 10.7498/aps.42.1617
    [17] YANG YONG-HONG, XING DING-YU, GONG CHANG-DE. METAL-INSULATOR TRANSITION IN YBa2Cu3O7-x. Acta Physica Sinica, 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
    [18] LI BAO-XIANG. MICROHARDNESS MEASUREMENT OF RARE EARTH PENTAPHOSPHATE CRYSTALS. Acta Physica Sinica, 1989, 38(1): 128-133. doi: 10.7498/aps.38.128
    [19] LI BAO-XIANG. THE MEASUREMENT OF REFRACTIVE INDICES AND DENSITY OF RARE-EARTH PENTAPHOSPHATE CRYSTALS. Acta Physica Sinica, 1987, 36(6): 823-827. doi: 10.7498/aps.36.823
    [20] YU XIN-NAN, ZHANG QING-ZHE, XIE KAN, QI SHANG-XUE, KANG JIN, LIN ZHANG-DA. THE SURFACE FEATURES OF THE POISONING OF LATHANIUM RICH MIXED RARE EARTH-NICKEL HYDROGEN STORAGE MATERIAL BY CO,O2 AND H2O. Acta Physica Sinica, 1983, 32(10): 1333-1338. doi: 10.7498/aps.32.1333
Metrics
  • Abstract views:  1066
  • PDF Downloads:  38
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2024
  • Accepted Date:  29 August 2024
  • Available Online:  05 September 2024
  • Published Online:  05 October 2024

/

返回文章
返回