Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling of temperature effect on DC characteristics of microwave GaN devices

Wang Shuai Ge Chen Xu Zu-Yin Cheng Ai-Qiang Chen Dun-Jun

Citation:

Modeling of temperature effect on DC characteristics of microwave GaN devices

Wang Shuai, Ge Chen, Xu Zu-Yin, Cheng Ai-Qiang, Chen Dun-Jun
PDF
HTML
Get Citation
  • Due to the advantages of high power density, high efficiency, and great potential in extreme temperature environments, the GaN high electron mobility transistor (HEMT) device is widely used in circuit systems at high or low temperatures. However, its electrical performance is sensitive to the ambient temperature. Therefore, it is essential to build a model that can accurately characterize the electrical performance of GaN HEMTs at different ambient temperatures, which is also essential for precise circuit design. With the analysis of experiment and theory on the GaN HEMT at different ambient temperatures, an improved model for temperature effect on the DC characteristics of the GaN HEMT is proposed based on EEHEMT model. Considering the influence of the ambient temperature on electrical properties of the GaN HEMT, such as the threshold voltage, the knee voltage, and the saturated current, the model establishes a temperature-dependent function for key parameters in the formula of the drain-source current. Through Verilog-A implementation and simulation on the ICCAP software, the improved model accurately reflects the trend of the electrical performance changes of the GaN HEMT at different ambient temperatures. To further verify the model in this work, the on-wafer measurements at different temperatures including –55, –25, 25 and 75 ℃ are carried out for GaN HEMTs with different sizes, which are developed by Nanjing Electronic Devices Institute. Compared with the measured data, the output characteristics and the transfer characteristics simulated by the proposed model are accurate in an ambient temperature range of –55–75 ℃, with a relative fitting error less than 5%. The result shows that the improved model is of guiding significance in analyzing the direct current performance and high reliability design of circuits at different temperatures.
      Corresponding author: Chen Dun-Jun, djchen@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFF0707800, 2022YFF0707801) and the Primary Research & Development Plan of Jiangsu Province, China (Grant Nos. BE2022070, BE2022070-2).
    [1]

    Mishra U K, Parikh P, Wu Y F 2002 Proc. IEEE 90 1022Google Scholar

    [2]

    Quay R 2008 Gallium Nitride Electronics (Berlin: Springer-Verlag) pp23–30

    [3]

    赵正平 2015 半导体技术 40 1Google Scholar

    Zhao Z P 2015 Semicond. Tech. 40 1Google Scholar

    [4]

    Maas S A 2003 Nonlinear Microwave and RF Circuits Second Edition (Norwood: Artech House Publisher) pp29–55

    [5]

    Baylis C, Dunleavy L, Connick R 2009 IEEE 10th Annual Wireless and Microwave Technology Conference Clearwater, USA, April 20–21, 2009 p1

    [6]

    Eskanadri S, Hamedani F T 2012 Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems Warsaw, Poland, May 24–26, 2012 p360

    [7]

    Hajji R, Poulton M, Crittenden D B, Gengler J, Xia P 2014 9th European Microwave Integrated Circuit Conference Rome, Italy, October 6–7, 2014 p373

    [8]

    Darwish A M, Huebschman B D, Viveiros E, Hung H A 2009 IEEE T. Microw. Theory 57 3205Google Scholar

    [9]

    Ghosh S, Sharma K, Agnihotri S, Chauhan Y S, Khandelwal S, Fjeldly T A, Yigletu F M, Iñiguez B 2014 IEEE 2nd International Conference on Emerging Electronics Bengaluru, India, December 3–6, 2014 p1

    [10]

    Huque M A, Eliza S A, Rahman T, Huq H F, Islam S K 2009 Solid-State Electron. 53 341Google Scholar

    [11]

    林倩, 贾立宁, 胡单辉, 陈思维, 刘林盛, 刘畅, 刘建利 2022 南京邮电大学学报 42 42Google Scholar

    Lin Q, Jia L N, Hu D H, Chen S W, Liu L S, Liu C, Liu J L 2022 J. Nanjing Univ. Posts Telecommun. 42 42Google Scholar

    [12]

    Khan M K, Alim M A, Gaquiere C 2021 Microelectron. Eng. 238 111508Google Scholar

    [13]

    Tokuda H, Yamazaki J, Kuzuhara M 2010 J. Appl. Phys. 108 104509Google Scholar

    [14]

    Zomorrodian V, Pei Y, Mishra U K, York R A 2010 Phys. Status Solidi 7 2450Google Scholar

    [15]

    Chang Y H, Chang J J 2007 IEEE Conference on Electron Devices and Solid-State Circuits Tainan, Taiwan, December 20–22, 2007 p237

    [16]

    Curtice W R 1980 IEEE T. Microw. Theory 28 448Google Scholar

    [17]

    Dhar J, Garg S K, Arora P K, Rana S S, 2007 International Symposium on Signals, Circuits and Systems Iasi, Romania, July 13–14, 2007 p1

    [18]

    成爱强, 王帅, 徐祖银, 贺瑾, 张天成, 包华广, 丁大志 2023 物理学报 72 147103Google Scholar

    Cheng A Q, Wang S, Zu Z Y, He J, Zhang T C, Bao H G, Ding D Z 2023 Acta Phys. Sin. 72 147103Google Scholar

    [19]

    亚历克斯·利多, 约翰·斯其顿, 迈克尔·德·罗伊, 戴维·罗伊施 (段宝兴, 杨银堂译) 2018 氮化镓功率晶体—器件、电路与应用第二版 (北京: 机械工业出版社) 第36—37页

    Alex L, John S, Michael D R, David R (translated by Duan B X, Yang Y T) 2008 GaN Transistors for Efficient Power Conversion Second Edition (Beijing: China Machine Press) pp36–37

    [20]

    Cuerdo R, Pedrós J, Navarro A, Braña A F, Paul J L, Muñoz E, Calle F 2008 Mater. Electron. 19 189Google Scholar

    [21]

    Hatano M, Kunishio N, Chikaoka H, Yamazaki J, Makhzani Z B, Yafune N, Sakuno K, Hashimoto S, Akita K, Yamamoto Y, Kuzuhara M 2010 CS MANTECH Conference Oregon, USA, May 17–20, 2010 p101

    [22]

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303 [张雪冰, 刘乃漳, 姚若河 2020 物理学报 69 157303]Google Scholar

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303Google Scholar

    [23]

    任春江, 陈堂胜, 焦刚, 李肖 2007 固体电子学研究与进展 27 329Google Scholar

    Ren C J, Chen T S, Jiao G, Li X 2007 Res. Prog. Solid State Electron. 27 329Google Scholar

    [24]

    高建军 2007 场效应晶体管射频微波建模技术 (北京: 电子工业出版) 第75—125页

    Gao J J 2007 RF Microwave Modeling Technology for Field Effect Transistors (Beijing: Electronic Industry Publishing) pp75–125

    [25]

    Wang Y H, Liang Y C, Samudra1 G S, Chang T F, Huang C F, Yuan L, Lo G Q 2013 Semicond. Sci. Tech. 28 125010Google Scholar

    [26]

    Islam S, Alim M A, Chowdhury A Z, Gaquiere C 2022 JTAC 147 10991Google Scholar

  • 图 1  不同温度下GaN HEMT直流特性曲线 (a) 输出特性; (b)转移特性

    Figure 1.  I-V characteristic curves of the GaN device under different ambient temperatures: (a) The transfer characteristics; (b) the output characteristics.

    图 2  GaN器件EEHEMT模型跨导曲线示意图

    Figure 2.  gm-Vgs in EEHEMT model of the GaN device.

    图 3  测试系统 (a) 直流特性测试平台; (b) 不同尺寸GaN HEMT实物图

    Figure 3.  The test system: (a) Measurement for the DC characteristics; (b) photographs of GaN HEMTs.

    图 4  不同温度下仿真和实测的Rd/Rs对比

    Figure 4.  Comparison between modeled and measured results of Rd and Rs under different temperatures.

    图 7  不同温度下仿真和实测的Peff对比

    Figure 7.  Comparison between modeled and measured results of Peff under different temperatures.

    图 5  不同温度下仿真和实测的VtoVgo对比

    Figure 5.  Comparison between modeled and measured results of Vto and Vgo under different temperatures.

    图 6  不同温度下仿真和实测的Gmmax对比

    Figure 6.  Comparison between modeled and measured results of Gmmax under different temperatures.

    图 8  不同温度下输出特性拟合结果 (a) 400 μm器件; (b) 800 μm器件; (c) 1200 μm器件

    Figure 8.  The fitting result of the output characteristics Ids-Vds under different ambient temperatures: (a) The 400-μm-wide device; (b) the 800-μm-wide device; (c) the 1200-μm-wide device.

    图 9  不同温度下转移特性拟合结果 (a) 400 μm器件; (b) 800 μm器件; (c) 1200 μm器件

    Figure 9.  The fitting result of the transfer characteristics Ids-Vgs under different ambient temperatures: (a) The 400-μm-wide device; (b) the 800-μm-wide device; (c) the 1200-μm-wide device.

    表 1  温度效应相关参数

    Table 1.  Values of the parameters related to temperature effect.

    参数 Trd Trs Tvto Tvgo Tpeff Tgmmax1 Tgmmax2
    数值 1.91×10–3 6.67×10–3 4.30×10–4 –2.30×10–4 –0.81 –2.66×10–3 0.44
    DownLoad: CSV
  • [1]

    Mishra U K, Parikh P, Wu Y F 2002 Proc. IEEE 90 1022Google Scholar

    [2]

    Quay R 2008 Gallium Nitride Electronics (Berlin: Springer-Verlag) pp23–30

    [3]

    赵正平 2015 半导体技术 40 1Google Scholar

    Zhao Z P 2015 Semicond. Tech. 40 1Google Scholar

    [4]

    Maas S A 2003 Nonlinear Microwave and RF Circuits Second Edition (Norwood: Artech House Publisher) pp29–55

    [5]

    Baylis C, Dunleavy L, Connick R 2009 IEEE 10th Annual Wireless and Microwave Technology Conference Clearwater, USA, April 20–21, 2009 p1

    [6]

    Eskanadri S, Hamedani F T 2012 Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems Warsaw, Poland, May 24–26, 2012 p360

    [7]

    Hajji R, Poulton M, Crittenden D B, Gengler J, Xia P 2014 9th European Microwave Integrated Circuit Conference Rome, Italy, October 6–7, 2014 p373

    [8]

    Darwish A M, Huebschman B D, Viveiros E, Hung H A 2009 IEEE T. Microw. Theory 57 3205Google Scholar

    [9]

    Ghosh S, Sharma K, Agnihotri S, Chauhan Y S, Khandelwal S, Fjeldly T A, Yigletu F M, Iñiguez B 2014 IEEE 2nd International Conference on Emerging Electronics Bengaluru, India, December 3–6, 2014 p1

    [10]

    Huque M A, Eliza S A, Rahman T, Huq H F, Islam S K 2009 Solid-State Electron. 53 341Google Scholar

    [11]

    林倩, 贾立宁, 胡单辉, 陈思维, 刘林盛, 刘畅, 刘建利 2022 南京邮电大学学报 42 42Google Scholar

    Lin Q, Jia L N, Hu D H, Chen S W, Liu L S, Liu C, Liu J L 2022 J. Nanjing Univ. Posts Telecommun. 42 42Google Scholar

    [12]

    Khan M K, Alim M A, Gaquiere C 2021 Microelectron. Eng. 238 111508Google Scholar

    [13]

    Tokuda H, Yamazaki J, Kuzuhara M 2010 J. Appl. Phys. 108 104509Google Scholar

    [14]

    Zomorrodian V, Pei Y, Mishra U K, York R A 2010 Phys. Status Solidi 7 2450Google Scholar

    [15]

    Chang Y H, Chang J J 2007 IEEE Conference on Electron Devices and Solid-State Circuits Tainan, Taiwan, December 20–22, 2007 p237

    [16]

    Curtice W R 1980 IEEE T. Microw. Theory 28 448Google Scholar

    [17]

    Dhar J, Garg S K, Arora P K, Rana S S, 2007 International Symposium on Signals, Circuits and Systems Iasi, Romania, July 13–14, 2007 p1

    [18]

    成爱强, 王帅, 徐祖银, 贺瑾, 张天成, 包华广, 丁大志 2023 物理学报 72 147103Google Scholar

    Cheng A Q, Wang S, Zu Z Y, He J, Zhang T C, Bao H G, Ding D Z 2023 Acta Phys. Sin. 72 147103Google Scholar

    [19]

    亚历克斯·利多, 约翰·斯其顿, 迈克尔·德·罗伊, 戴维·罗伊施 (段宝兴, 杨银堂译) 2018 氮化镓功率晶体—器件、电路与应用第二版 (北京: 机械工业出版社) 第36—37页

    Alex L, John S, Michael D R, David R (translated by Duan B X, Yang Y T) 2008 GaN Transistors for Efficient Power Conversion Second Edition (Beijing: China Machine Press) pp36–37

    [20]

    Cuerdo R, Pedrós J, Navarro A, Braña A F, Paul J L, Muñoz E, Calle F 2008 Mater. Electron. 19 189Google Scholar

    [21]

    Hatano M, Kunishio N, Chikaoka H, Yamazaki J, Makhzani Z B, Yafune N, Sakuno K, Hashimoto S, Akita K, Yamamoto Y, Kuzuhara M 2010 CS MANTECH Conference Oregon, USA, May 17–20, 2010 p101

    [22]

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303 [张雪冰, 刘乃漳, 姚若河 2020 物理学报 69 157303]Google Scholar

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303Google Scholar

    [23]

    任春江, 陈堂胜, 焦刚, 李肖 2007 固体电子学研究与进展 27 329Google Scholar

    Ren C J, Chen T S, Jiao G, Li X 2007 Res. Prog. Solid State Electron. 27 329Google Scholar

    [24]

    高建军 2007 场效应晶体管射频微波建模技术 (北京: 电子工业出版) 第75—125页

    Gao J J 2007 RF Microwave Modeling Technology for Field Effect Transistors (Beijing: Electronic Industry Publishing) pp75–125

    [25]

    Wang Y H, Liang Y C, Samudra1 G S, Chang T F, Huang C F, Yuan L, Lo G Q 2013 Semicond. Sci. Tech. 28 125010Google Scholar

    [26]

    Islam S, Alim M A, Chowdhury A Z, Gaquiere C 2022 JTAC 147 10991Google Scholar

  • [1] Lü Ling, Xing Mu-Han, Xue Bo-Rui, Cao Yan-Rong, Hu Pei-Pei, Zheng Xue-Feng, Ma Xiao-Hua, Hao Yue. Effect of heavy ion radiation on low frequency noise characteristics of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] Wu Peng, Li Ruo-Han, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Interface-state suppression of AlGaN/GaN Schottky barrier diodes with post-anode-annealing treatment. Acta Physica Sinica, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [3] Liu Nai-Zhang, Yao Ruo-He, Geng Kui-Wei. Gate capacitance model of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [4] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [5] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] Dong Shi-Jian, Guo Hong-Xia, Ma Wu-Ying, Lv Ling, Pan Xiao-Yu, Lei Zhi-Feng, Yue Shao-Zhong, Hao Rui-Jing, Ju An-An, Zhong Xiang-Li, Ouyang Xiao-Ping. Ionizing radiation damage mechanism and biases correlation of AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [7] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [8] Tang Wen-Xin, Hao Rong-Hui, Chen Fu, Yu Guo-Hao, Zhang Bao-Shun. p-GaN hybrid anode AlGaN/GaN diode with 1000 V operation. Acta Physica Sinica, 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [9] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [10] Zhang Li, Lin Zhi-Yu, Luo Jun, Wang Shu-Long, Zhang Jin-Cheng, Hao Yue, Dai Yang, Chen Da-Zheng, Guo Li-Xin. High breakdown voltage lateral AlGaN/GaN high electron mobility transistor with p-GaN islands buried buffer layer for power applications. Acta Physica Sinica, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [11] Wang Kai, Xing Yan-Hui, Han Jun, Zhao Kang-Kang, Guo Li-Jian, Yu Bao-Ning, Deng Xu-Guang, Fan Ya-Ming, Zhang Bao-Shun. Growths of Fe-doped GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [12] Duan Bao-Xing, Yang Yin-Tang. Breakdown voltage analysis for the new Al0.25 Ga0.75N/GaN HEMTs with the step AlGaN layers. Acta Physica Sinica, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [13] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [14] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [15] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [16] Zhang Jin-Cheng, Zheng Peng-Tian, Dong Zuo-Dian, Duan Huan-Tao, Ni Jin-Yu, Zhang Jin-Feng, Hao Yue. The effect of back-barrier layer on the carrier distribution in the AlGaN/GaN double-heterostructure. Acta Physica Sinica, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [17] Liu Lin-Jie, Yue Yuan-Zheng, Zhang Jin-Cheng, Ma Xiao-Hua, Dong Zuo-Dian, Hao Yue. Temperature characteristics of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric. Acta Physica Sinica, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [18] Wang Chong, Quan Si, Zhang Jin-Feng, Hao Yue, Feng Qian, Chen Jun-Feng. Simulation and experimental investigation of recessed-gate AlGaN/GaN HEMT. Acta Physica Sinica, 2009, 58(3): 1966-1970. doi: 10.7498/aps.58.1966
    [19] Wei Wei, Hao Yue, Feng Qian, Zhang Jin-Cheng, Zhang Jin-Feng. Geometrical optimization of AlGaN/GaN field-plate high electron mobility transistor. Acta Physica Sinica, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [20] Guo Liang-Liang, Feng Qian, Hao Yue, Yang Yan. Study of high breakdown-voltage AlGaN/GaN FP-HEMT. Acta Physica Sinica, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
Metrics
  • Abstract views:  978
  • PDF Downloads:  29
  • Cited By: 0
Publishing process
  • Received Date:  30 May 2024
  • Accepted Date:  19 July 2024
  • Available Online:  05 August 2024
  • Published Online:  05 September 2024

/

返回文章
返回