Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrochemical-thermal-mechanical overcharge model on a scale of particle for lithium-ion batteries

ZHANG Huirou ZENG Xiaoqi LI Jiaxing REN Yimao WU Weixiong

Citation:

Electrochemical-thermal-mechanical overcharge model on a scale of particle for lithium-ion batteries

ZHANG Huirou, ZENG Xiaoqi, LI Jiaxing, REN Yimao, WU Weixiong
cstr: 32037.14.aps.74.20240984
PDF
HTML
Get Citation
  • During overcharging of lithium-ion batteries, lithium plating can occur on the anode surface when the maximum lithium intercalation concentration is exceeded, while the cathode is in a lithium-poor state, which can result in shortened battery lifespan and safety. In this work, the geometric structure of the positive electrode particles is designed based on the tomography data, while the negative electrode particles are represented by spheres with different sizes. The homogenization method is used, with the carbon filler, binder and electrolyte regarded as a single porous conductive adhesive domain. Based on the main mechanism of lithium-ion battery overcharge, a coupled three-dimensional electrochemical-mechanical-thermal overcharge model on a particle scale is developed for NCM cathode and graphite anode. The coupled mathematical model consists of four parts, namely the electrochemical model, the lithium plating model, the thermal model and the stress-strain model. In terms of lithium precipitation, the particle radius parameter and charging rates are investigated. The results show that the lithium plating concentration of the particles near the separator is higher, following the “principle of proximity” , namely the sequence of lithium deintercalation is related to the migration path. The surface of anode particles with small particle size is more prone to lithium precipitation due to the high maximum lithium ion concentration on the surface of the particles, the low surface lithium precipitation overpotential, and the high average Von Mises stress. At high charging rate, fast charge transfer rate and ion diffusion rate result in a low voltage at the anode, triggering off lithium precipitation. At a low rate, polarization and low temperature can lead to the precipitation of more lithium on the surface of the anode particles. In terms of stress, the spatial distribution between particles and thermal effects are investigated. The ratio of the distance from the contact surface to the center of the particle to the particle radius is calculated and defined as the contact depth ($ J_{\rm r} $), in order to better describe the law of particle contact stress. It is shown that the contact depth between particles is inversely proportional to the stress on the contact area. When the heat generation effect is considered, the temperature of the battery rises faster with the increase of the charging rate. The electrochemical parameters related to temperature and the lithium concentration diffusion gradient increase significantly, and the influence of temperature on the particle stress is also more significant. The relevant results can provide theoretical basis and guidance for designing battery and optimizing charge strategies.
      Corresponding author: WU Weixiong, weixiongw@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52476200, 52106244), the Natural Science Foundation of Guangdong Province, China (Grant No. 2024A1515030124), the Science and Technology Project of China Southern Power Grid (Grant No. GDKJXM20230246(030100KC23020017)), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Yong J Y, Ramachandaramurthy V K, Tan K M, Mithulananthan N 2015 Renew. Sust. Energ. Rev. 49 365Google Scholar

    [2]

    Crabtree G 2019 Science 366 422Google Scholar

    [3]

    Huang W S, Feng X N, Han X B, Zhang W F, Jiang F C 2021 Cell Rep. Phys. Sci. 2 100285Google Scholar

    [4]

    Wang Q S, Mao B B, Stoliarov S I, Sun J H 2019 Prog. Energ. Combust. 73 95Google Scholar

    [5]

    Belova I V, Murch G E 1995 J. Appl. Phys. 77 127Google Scholar

    [6]

    Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y Y W, Xu B X 2019 J. Power Sources 413 259Google Scholar

    [7]

    Pastor-Fernández C, Uddin K, Chouchelamane G H, Widanage W D, Marco J 2017 J. Power Sources 360 301Google Scholar

    [8]

    王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓 2018 物理学报 67 128501Google Scholar

    Wang Q Y, Wang S, Zhou G, Zhang J N, Zheng J Y, Yu X Q, Li H 2018 Acta Phys. Sin. 67 128501Google Scholar

    [9]

    Honbo H, Takei K, Ishii Y, Nishida T 2009 J. Power Sources 189 337Google Scholar

    [10]

    Mei W X, Duan Q L, Qin P, Xu J J, Wang Q S, Sun J H 2019 J. Electrochem. Soc. 166 A3319Google Scholar

    [11]

    Arora P, Doyle M, White R E 1999 J. Electrochem. Soc. 146 3543Google Scholar

    [12]

    Ren D S, Smith K, Guo D X, Han X B, Feng X N, Lu L G, Ouyang M G, Li J Q 2018 J. Electrochem. Soc. 165 A2167Google Scholar

    [13]

    Mei W X, Zhang L, Sun J H, Wang Q S 2020 Energy Storage Mater. 32 91Google Scholar

    [14]

    Yang S, Hua Y, Qiao D, Lian Y, Pan Y, He Y 2019 Electrochim. Acta 326 134928Google Scholar

    [15]

    Wang Y N, Li H, Wang Z K, Lian C, Xie Z F 2021 J. Energy Storage 43 103214Google Scholar

    [16]

    Schmidt A, Ramani E, Carraro T, Joos J, Weber A, Kamlah M, Ivers-Tiffée E 2021 Energy Technology 6 2000881Google Scholar

    [17]

    Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V 2013 Adv. Energ. Mater. 3 845Google Scholar

    [18]

    李涛, 程夕明, 胡晨华 2021 物理学报 70 138801Google Scholar

    Li T, Cheng X M, Hu C H, 2021 Acta Phys. Sin. 70 138801Google Scholar

    [19]

    Yang F Q 2016 Sci. China Phys. Mech. 59 44Google Scholar

    [20]

    Newman J S, Tobias C W 1962 J. Electrochem. Soc. 109 1183Google Scholar

    [21]

    Ge H, Aoki T, Ikeda N, Suga S, Isobe T, Li Z, Tabuchi Y, Zhang J 2017 J. Electrochem. Soc. 164 A1050Google Scholar

    [22]

    David W I F, Thackeray M M, De Picciotto L A, Goodenough J B 1987 J. Solid State Chem. 67 316Google Scholar

    [23]

    Yang F 2005 Mater. Sci. Eng. A 409 153Google Scholar

    [24]

    Wu B, Lu W 2017 J. Power Sources 360 360Google Scholar

    [25]

    Guo M, Sikha G 2010 J. Electrochem. Soc. 158 A122Google Scholar

    [26]

    蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国 2017 物理学报 66 118202Google Scholar

    Jang Y H, Ai L, Jia M, Cheng J, Du S L, Li S G 2017 Acta Phys. Sin. 66 118202Google Scholar

    [27]

    Wu W, Xiao X, Huang X, Yan S 2014 Comp. Mater. Sci. 83 127Google Scholar

    [28]

    Samba A, Omar N, Gualous H, Capron O, Van B P, Van M J 2014 Electrochim. Acta 147 319Google Scholar

    [29]

    Lai Y, Du S, Ai L, Cheng Y, Tang Y, Jia M 2015 Int. J. Hydrogen Energy 40 13039Google Scholar

    [30]

    Mei W X, Chen H, Sun J H, Wang Q S 2018 Appl. Therm. Eng. 142 148Google Scholar

    [31]

    Hahn M, Buqa H, Ruch P W, Goers D, Spahr M E, Ufheil J, Novák P, Kötz R 2008 Electrochem. Solid State Lett. 11 A151Google Scholar

    [32]

    Kondrakov A O, Schmidt A, Xu J, Geßwein H, Mönig R, Hartmann P, Sommer H, Brezesinski T, Janek J 2017 J. Phys. Chem. C 121 3286Google Scholar

    [33]

    Hosseinzadeh E, Genieser R, Worwood D, Barai A, Marco J, Jennings P 2018 J. Power Sources 382 77Google Scholar

    [34]

    Yang Y, Zhong X L, Xu L 2024 J. Energy Chem. 97 453Google Scholar

    [35]

    魏振伟, 毛烁源, 汪宇, 韩雪冰, 卢兰光, 欧阳明高 2024 上海理工大学学报 46 1Google Scholar

    Wei Z W, Mao L Y, Wang Y, Lu L G, Ouyang M G 2024 J. Univ. Shanghai Sci. Tech. 46 1Google Scholar

    [36]

    Mao S, Wang Y, Lu Y, et al. 2025 InfoMat 7 e12612Google Scholar

    [37]

    Wu W, Ma R, Liu J, Liu M, Wang We, Wang Q 2021 Int. J. Heat Mass Tran. 170 121024Google Scholar

    [38]

    骆晨旭, 师晨光, 余志远, 黄令, 孙世刚 2022 电化学 28 2006131Google Scholar

    Luo C X, Shi C G, Yu Z Y, Huang L, Sun S G 2022 J. Electrochem. 28 2006131Google Scholar

    [39]

    Manthiram A 2020 Nat. Commun. 11 1550Google Scholar

  • 图 1  模型几何图和耦合关系图 (a) 几何模型; (b) 网格; (c) 数学模型之间的耦合关系

    Figure 1.  Geometric shape and coupling relationship diagram of the model: (a) Geometric shape; (b) mesh; (c) coupling relationship between mathematical models.

    图 2  NCM和石墨随化学计量系数x变化的熵系数(a)[12]和平衡电位曲线 (b) [13]

    Figure 2.  Entropy coefficient (a) [12] and the equilibrium potential (b) [13] as a function of the chemical composition coefficient x of NCM and graphite.

    图 3  NCM111和石墨随化学计量系数x变化的体积变化率[31,32]

    Figure 3.  Volume change rate of NCM111 and graphite as a function of stoichiometry coefficient x [31,32].

    图 4  电压的仿真数据与实验数据的对比 (a) 充电至4.2 V时, 充电倍率为0.2C, 0.5C, 1C和1.5C的电压变化图; (b) 充电至4.8 V时, 充电倍率为0.2C, 0.5C的电压变化图

    Figure 4.  Comparison between simulated and experimental data of voltage: (a) Voltage variation graphs charging to 4.2 V at charging rates of 0.2C, 0.5C, 1C and 1.5C; (b) voltage variation graphs charging to 4.8 V at charging rates of 0.2C and 0.5C.

    图 5  (a) 负极颗粒表面析出锂金属浓度分布; (b) 负极颗粒表面析锂过电位绝对值分布; (c) 不同粒径颗粒位置示意(蓝色标记)

    Figure 5.  (a) Lithium metal concentration on the particle surface; (b) the absolute value of overpotential of lithium plating on the particle surface; (c) position of particles with different sizes (the blue area).

    图 6  在负极两个颗粒表面的过充过程 (a) 析出锂金属浓度; (b) 最大锂离子浓度; (c) 平均析锂过电位; (d) 平均冯·米塞斯应力

    Figure 6.  Overcharging process on the surfaces of two negative particles: (a) Concentration of lithium metal precipitated; (b) maximum lithium ion concentration; (c) average lithium precipitation overpotential; (d) average von Mises stress.

    图 7  不同倍率下的负极整个表面析出的锂金属浓度(a)和负极颗粒的温度(b)

    Figure 7.  (a) Lithium metal concentration precipitated on the whole surface of the negative electrode and (b) the temperature of the negative electrode particles at different charging rates.

    图 8  (a) 0.5C充电至4.8 V的正极与负极应力; (b) 0.5C充电至4.8 V的正极应力-应变

    Figure 8.  (a) Stress of the cathode and anode charged to 4.8 V at 0.5C; (b) stress-strain of the cathode charged to 4.8 V at 0.5C.

    图 9  0.5C充电至3.9 V, 4.2 V, 4.5 V, 4.8 V的正极颗粒应力-应变分布图

    Figure 9.  Stress-strain distribution diagrams of cathode particles charged to 3.9 V, 4.2 V, 4.5 V and 4.8 V at 0.5C.

    图 10  A, B, C和D四组颗粒的接触应力-应变(a)和位置(b)

    Figure 10.  (a) Contact stress and strain of particles and (b) corresponding position in groups A, B, C and D.

    图 11  0.2C (a), (c) 和0.5C (b), (d)倍率下, 正极颗粒平均冯·米塞斯应力, 以及温度相关系数随充电过程变化

    Figure 11.  Average von Mises stress of positive electrode particles and temperature-dependent coefficient at (a), (c) 0.2C and (b), (d) 0.5C.

    表 1  电化学过充模型中的几何参数和结构

    Table 1.  Geometric parameters and structure of the electrochemical overcharge model.

    参数 负极 隔膜 正极
    长度 L/μm 80 30 95
    颗粒平均半径 Rs_avg/μm 4.15 6.19
    颗粒最大/最小半径Rsmax/min/μm 14.61/1.03 14.25/1.62
    颗粒面积 Ap/μm2 24997 20553
    颗粒体积 Vp/μm3 37892 36193
    电池截面长度 Lcross/μm 37
    电池截面宽度 Wcross/μm 34.4
    比表面积 av/m–1 2.52×105 1.69×105
    固相体积分数 ψs 0.3833 0.2984
    液相体积分数 ψe 0.6167 0.7015
    DownLoad: CSV

    表 4  电化学过充模型中的热力学参数[27-30]

    Table 4.  Thermal mechanical parameters of the electrochemical overcharge model[27-30].

    参数 负极 隔膜 正极
    密度 ρ/kg·m–3 2300 1000 4530
    杨氏模量 E/GPa 10 78
    泊松比 ν 0.3 0.25
    热膨胀系数 αT/K–1 4.06×10–6 1.2×10–5
    电池比热容 Cp/(J·kg–1·K–1) 881 1260 1009.21
    对流系数 h/(W·m–2·K–1) 10
    DownLoad: CSV

    表 2  电化学过充模型中的电化学参数[12,13,16]

    Table 2.  Electrochemical parameters of the electrochemical overcharge model[12,13,16].

    参数 负极 隔膜 正极
    固相电子电导率 σs/(S·m–1) 100 3.8
    固相有效电子电导率 σs,eff/(S·m–1) $\psi_{\rm s}^{1.5}\sigma_{\mathrm{s}} $ $\psi_{\rm s}^{1.5}\sigma_{\mathrm{s}} $
    液相离子电导率 σe/(S·m–1) $c_{\rm e}(5.38- 3.49 \times 10^{-4}c_{\rm e} + 2.3 \times 10^{-7} c_{\rm e}^2)^2 \times 10^{-4} $
    液相有效离子电导率 σe, eff/(S·m–1) $\psi_{\rm e}^{1.5}\sigma_{\mathrm{e}} $
    液相电子电导率 σca/(S·m–1) 10
    σe的活性能 Ea,σe/(kJ·mol–1) 30
    初始电解质浓度 ce,0/(mol·m–3) 1200
    最大固相锂浓度 cs,max/(mol·m–3) 24407 30017
    化学计量系数 x 在1/0 SOC 0.115/0.98 0.92/0.222
    容量比 N/P 1.09
    固相扩散系数 Ds/(m2·S–1) 1.45×10–13 2×10–13
    液相扩散系数 De/(m2·S–1) $ 10^{[-8.43-54/(59.15-0.05c_{\text{e}})-2.2\times10^{-4}c_e^2]} $
    液相有效扩散系数 De,eff/(m2·S–1) $\psi_{\rm e}^{1.5}D_{\mathrm{e}} $
    De的活化能 Ea,De/(kJ·mol–1) 72
    DownLoad: CSV

    表 3  电化学过充模型中的动力学参数[13]

    Table 3.  Dynamics parameters of the electrochemical overcharge model[13].

    参数 负极 隔膜 正极
    反应的传递系数 αa,1, αc,1 0.5, 0.5 0.5, 0.5
    反应速率常数 k1,ref/(m·s–1) 2×10–11 2×10–11
    k1 的活化能 Ea,k1/(kJ·mol–1) 71 45
    析锂反应传递系数 αa,2, αc,2 0.3, 0.7
    析锂反应速率常数 k2,ref/(m·s–1) 2.5×10–7
    k2的活化能Ea,k2/(kJ·mol–1) 50
    锂的摩尔质量 Mpl/(kg·mol–1) 6.94×10–5
    锂的密度 ρpl/(kg·m–3) 534
    电导率 σfilm/(S·m–1) 6×10–5
    析锂的平衡电位 Eeq,Li/V 0
    DownLoad: CSV
  • [1]

    Yong J Y, Ramachandaramurthy V K, Tan K M, Mithulananthan N 2015 Renew. Sust. Energ. Rev. 49 365Google Scholar

    [2]

    Crabtree G 2019 Science 366 422Google Scholar

    [3]

    Huang W S, Feng X N, Han X B, Zhang W F, Jiang F C 2021 Cell Rep. Phys. Sci. 2 100285Google Scholar

    [4]

    Wang Q S, Mao B B, Stoliarov S I, Sun J H 2019 Prog. Energ. Combust. 73 95Google Scholar

    [5]

    Belova I V, Murch G E 1995 J. Appl. Phys. 77 127Google Scholar

    [6]

    Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y Y W, Xu B X 2019 J. Power Sources 413 259Google Scholar

    [7]

    Pastor-Fernández C, Uddin K, Chouchelamane G H, Widanage W D, Marco J 2017 J. Power Sources 360 301Google Scholar

    [8]

    王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓 2018 物理学报 67 128501Google Scholar

    Wang Q Y, Wang S, Zhou G, Zhang J N, Zheng J Y, Yu X Q, Li H 2018 Acta Phys. Sin. 67 128501Google Scholar

    [9]

    Honbo H, Takei K, Ishii Y, Nishida T 2009 J. Power Sources 189 337Google Scholar

    [10]

    Mei W X, Duan Q L, Qin P, Xu J J, Wang Q S, Sun J H 2019 J. Electrochem. Soc. 166 A3319Google Scholar

    [11]

    Arora P, Doyle M, White R E 1999 J. Electrochem. Soc. 146 3543Google Scholar

    [12]

    Ren D S, Smith K, Guo D X, Han X B, Feng X N, Lu L G, Ouyang M G, Li J Q 2018 J. Electrochem. Soc. 165 A2167Google Scholar

    [13]

    Mei W X, Zhang L, Sun J H, Wang Q S 2020 Energy Storage Mater. 32 91Google Scholar

    [14]

    Yang S, Hua Y, Qiao D, Lian Y, Pan Y, He Y 2019 Electrochim. Acta 326 134928Google Scholar

    [15]

    Wang Y N, Li H, Wang Z K, Lian C, Xie Z F 2021 J. Energy Storage 43 103214Google Scholar

    [16]

    Schmidt A, Ramani E, Carraro T, Joos J, Weber A, Kamlah M, Ivers-Tiffée E 2021 Energy Technology 6 2000881Google Scholar

    [17]

    Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V 2013 Adv. Energ. Mater. 3 845Google Scholar

    [18]

    李涛, 程夕明, 胡晨华 2021 物理学报 70 138801Google Scholar

    Li T, Cheng X M, Hu C H, 2021 Acta Phys. Sin. 70 138801Google Scholar

    [19]

    Yang F Q 2016 Sci. China Phys. Mech. 59 44Google Scholar

    [20]

    Newman J S, Tobias C W 1962 J. Electrochem. Soc. 109 1183Google Scholar

    [21]

    Ge H, Aoki T, Ikeda N, Suga S, Isobe T, Li Z, Tabuchi Y, Zhang J 2017 J. Electrochem. Soc. 164 A1050Google Scholar

    [22]

    David W I F, Thackeray M M, De Picciotto L A, Goodenough J B 1987 J. Solid State Chem. 67 316Google Scholar

    [23]

    Yang F 2005 Mater. Sci. Eng. A 409 153Google Scholar

    [24]

    Wu B, Lu W 2017 J. Power Sources 360 360Google Scholar

    [25]

    Guo M, Sikha G 2010 J. Electrochem. Soc. 158 A122Google Scholar

    [26]

    蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国 2017 物理学报 66 118202Google Scholar

    Jang Y H, Ai L, Jia M, Cheng J, Du S L, Li S G 2017 Acta Phys. Sin. 66 118202Google Scholar

    [27]

    Wu W, Xiao X, Huang X, Yan S 2014 Comp. Mater. Sci. 83 127Google Scholar

    [28]

    Samba A, Omar N, Gualous H, Capron O, Van B P, Van M J 2014 Electrochim. Acta 147 319Google Scholar

    [29]

    Lai Y, Du S, Ai L, Cheng Y, Tang Y, Jia M 2015 Int. J. Hydrogen Energy 40 13039Google Scholar

    [30]

    Mei W X, Chen H, Sun J H, Wang Q S 2018 Appl. Therm. Eng. 142 148Google Scholar

    [31]

    Hahn M, Buqa H, Ruch P W, Goers D, Spahr M E, Ufheil J, Novák P, Kötz R 2008 Electrochem. Solid State Lett. 11 A151Google Scholar

    [32]

    Kondrakov A O, Schmidt A, Xu J, Geßwein H, Mönig R, Hartmann P, Sommer H, Brezesinski T, Janek J 2017 J. Phys. Chem. C 121 3286Google Scholar

    [33]

    Hosseinzadeh E, Genieser R, Worwood D, Barai A, Marco J, Jennings P 2018 J. Power Sources 382 77Google Scholar

    [34]

    Yang Y, Zhong X L, Xu L 2024 J. Energy Chem. 97 453Google Scholar

    [35]

    魏振伟, 毛烁源, 汪宇, 韩雪冰, 卢兰光, 欧阳明高 2024 上海理工大学学报 46 1Google Scholar

    Wei Z W, Mao L Y, Wang Y, Lu L G, Ouyang M G 2024 J. Univ. Shanghai Sci. Tech. 46 1Google Scholar

    [36]

    Mao S, Wang Y, Lu Y, et al. 2025 InfoMat 7 e12612Google Scholar

    [37]

    Wu W, Ma R, Liu J, Liu M, Wang We, Wang Q 2021 Int. J. Heat Mass Tran. 170 121024Google Scholar

    [38]

    骆晨旭, 师晨光, 余志远, 黄令, 孙世刚 2022 电化学 28 2006131Google Scholar

    Luo C X, Shi C G, Yu Z Y, Huang L, Sun S G 2022 J. Electrochem. 28 2006131Google Scholar

    [39]

    Manthiram A 2020 Nat. Commun. 11 1550Google Scholar

  • [1] Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Physica Sinica, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [2] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [3] Zhang Yong-Quan, Yao An-Quan, Yang Liu, Zhu Kai, Cao Dian-Xue. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries. Acta Physica Sinica, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [4] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [5] Xing Li-Dan, Xie Qi-Ming, Li Wei-Shan. Research progress on electrochemical properties of electrolyte and its interphase. Acta Physica Sinica, 2020, 69(22): 228205. doi: 10.7498/aps.69.20201553
    [6] Xu Han, Zhang Lu, Dang Zheng. Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell. Acta Physica Sinica, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [7] Liu Zheng-Yu, Yang Kun, Wei Zi-Hong, Yao Li-Yang. Electrochemical model of lithium ion battery with simplified liquid phase diffusion equation. Acta Physica Sinica, 2019, 68(9): 098801. doi: 10.7498/aps.68.20190159
    [8] Zeng Jian-Bang,  Guo Xue-Ying,  Liu Li-Chao,  Shen Zu-Ying,  Shan Feng-Wu,  Luo Yu-Feng. Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model. Acta Physica Sinica, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [9] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [10] Sun Feng-Nan, Feng Lu, Bu Jia-He, Zhang Jing, Li Lin-An, Wang Shi-Bin. Effect of stress on electrochemical performance of hollow carbon-coated silicon snode in lithium ion batteries. Acta Physica Sinica, 2019, 68(12): 120201. doi: 10.7498/aps.68.20182279
    [11] Xu Zi-Wei, Shi Chang-Shuai, Zhao Guang-Hui, Wang Ming-Yuan, Liu Gui-Wu, Qiao Guan-Jun. Hydrogen adsorption mechanism on single-layer MoSe2 for hydrogen evolution reaction: First-principles study. Acta Physica Sinica, 2018, 67(21): 217102. doi: 10.7498/aps.67.20180882
    [12] Li Juan, Ru Qiang, Hu She-Jun, Guo Ling-Yun. Lithium intercalation properties of SnSb/C composite in carbonthermal reduction as the anode material for lithium ion battery. Acta Physica Sinica, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [13] Tang Yi-Wei, Jia Ming, Cheng Yun, Zhang Kai, Zhang Hong-Liang, Li Jie. Estimation of temperature distribution of the polymer lithium ion power battery based on the coupling relationship between electrochemistry and heat. Acta Physica Sinica, 2013, 62(15): 158201. doi: 10.7498/aps.62.158201
    [14] Zhang Zhao-Yang, Li Zhong-Yang, Qin Chang-Liang, Yin Jie, Zhang Chang-Tao, Mao Wei-Ping, Feng Qin-Yu. Analysis of stress-etching quality based on nanosecond pulse laser electrochemical machining. Acta Physica Sinica, 2013, 62(9): 094210. doi: 10.7498/aps.62.094210
    [15] Yang Bin-Xin, Ouyang Jie. Simulation of residual stress in viscoelastic mold filling process. Acta Physica Sinica, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [16] Liu Guang-You, Tan Xing-Wen, Yao Jin-Cai, Wang Zhen, Xiong Zu-Hong. “Black silicon" antireflection thin film prepared by electrochemical etching. Acta Physica Sinica, 2008, 57(1): 514-518. doi: 10.7498/aps.57.514
    [17] Wang Jie, Xu You-Long, Chen Xi, Du Xian-Feng, Li Xi-Fei. Properties of electropolymerized high density polypyrrole films. Acta Physica Sinica, 2007, 56(7): 4256-4261. doi: 10.7498/aps.56.4256
    [18] Gu Jian-Feng, Fu Wei-Jia, Liu Ming, Liu Zhi-Wen, Ma Chun-Yu, Zhang Qing-Yu. Highly c-axis textured ZnO thin films grown by electrochemical deposition and their optical properties. Acta Physica Sinica, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [19] Hu Hai-Ning, Chen Jing-Lan, Wu Guang-Heng, Chen Li-Jie, Liu He-Yan, Li Yang-Xian, Qu Jing-Ping. Magnetic properties of electrodeposited Fe and FePd nanowire arrays. Acta Physica Sinica, 2005, 54(9): 4370-4373. doi: 10.7498/aps.54.4370
    [20] Hu Hai-Ning, Chen Jing-Lan, Wu Guang-Heng. Control of the preferred orientation in electrodeposited single-crystal Fe nanowires. Acta Physica Sinica, 2005, 54(1): 389-392. doi: 10.7498/aps.54.389
Metrics
  • Abstract views:  285
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  15 July 2024
  • Accepted Date:  10 December 2024
  • Available Online:  19 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回