Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultra-low-noise laser intensity noise evaluation system in Hz frequency band for ground-based gravitational wave detection

Li Xiang WANG Jiawei Li Fan HUANG Tianshi Dang Hao ZHAO Desheng Tian Long SHI Shaoping Li Wei YIN Wangbao ZHENG Yaohui

Citation:

Ultra-low-noise laser intensity noise evaluation system in Hz frequency band for ground-based gravitational wave detection

Li Xiang, WANG Jiawei, Li Fan, HUANG Tianshi, Dang Hao, ZHAO Desheng, Tian Long, SHI Shaoping, Li Wei, YIN Wangbao, ZHENG Yaohui
cstr: 32037.14.aps.74.20241319
PDF
HTML
Get Citation
  • The direct detection of gravitational waves has opened up a new window for understanding the universe and trailblazed multi-messenger astronomy. The frequency bands of gravitational waves generated by various astronomical events can cover a broadband range, and the detection mechanisms and schemes for gravitational waves in different frequency bands are different. For example, the ground-based gravitational wave detection has a frequency band ranging from 10 Hz to 10 kHz, which is based on Michelson interferometer. The space gravitational wave detection has a frequency band in a range of 0.1 mHz–1 Hz , which is based on space interferometer. The pulsar gravitational wave detection has a frequency band ranging from 1×10–9 Hz to 1×10–7 Hz, which is based on pulsar timing array. The next-generation ground-based gravitational wave project requires higher sensitivity to detect faint signals, necessitating an assessment system with minimal background noise to accurately measure the laser relative intensity noise. At present, the detection frequency band of ground-based gravitational wave detection devices in operation is mainly concentrated in a range of 10 Hz–10 kHz. To satisfy the detection sensitivity requirements, the laser relative intensity noise should be accurately evaluated and suppressed to ≤2.0×10–9 Hz–1/2 at 10 Hz and ≤4.0×10–7 Hz–1/2 at 10 kHz by photoelectric feedback. In this work, an evaluation and characterization system is constructed for ground-based gravitational wave band laser intensity noise, which is based on low noise and high sensitivity photoelectric detection device and combined with LabVIEW and MATLAB algorithm programming for instrument control and data processing. This low noise evaluation system is used to test the background noise of fast Fourier transform (FFT) analyzer SR760, preamplifier SR560, photoelectric detector electronic noise and intensity noise of homemade optical fiber amplifier, and then the data extraction and image processing are carried out by LabVIEW and MATLAB algorithms, and finally the ground-based gravitational wave frequency band system is evaluated. The experimental results show that the electronic noises for the preamplifier SR560 and the FFT analyzer SR760 are lower than 3.8×10–9 Hz–1/2@(10 Hz–10 kHz). The electronic noise for the photodetector is lower than $ 1.4 \times {10^{ - 8}}\;{\text{V}}/\sqrt {{\text{Hz}}} $ at 10 Hz and $ 8.1 \times {10^{ - 9}}\;{\text{V}}/\sqrt {{\text{Hz}}} $ at 10 kHz, and the accuracy of the system is calibrated and tested by the standard sinusoidal signal. Finally, the noise of commercial laser is evaluated and compared with the factory data to verify the accuracy of the evaluation system. Related research, device and system development provide hardware, software and theoretical basis for preparing high-power low-noise laser light source and gravitational wave detection, and also provide the theoretical basis and evaluation criteria for detecting the ground-based gravitational wave .
      Corresponding author: ZHAO Desheng, deshengzhao@sxu.edu.cn ; Tian Long, tianlong@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62225504, U22A6003, 62027821, 62035015, 12174234, 12274275, 12304399), the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202303021212003, 202303021224006), and the Key R&D Program of Shanxi Province, China (Grant No. 202302150101015).
    [1]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2Google Scholar

    [2]

    Schmidt P 2019 J. Phys. Conf. Ser. 1468 012218Google Scholar

    [3]

    Patrick K 2010 Ph. D. Dissertation (Hannover: Vom Fachbereich Physik der Universiät Hannover

    [4]

    Anza S 2005 Classical Quant. Grav. 22 S125Google Scholar

    [5]

    Rer N 2005 Ph. D Dissertation (Hannover: Vom Fachbereich Physik der Universiät Hannover

    [6]

    Armano M, et al. (LIGO Scientific and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 231101Google Scholar

    [7]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [8]

    Ran D 2024 J. Cosmol. Astropart. Phys. 2 16Google Scholar

    [9]

    Daniel J, Andrew Z, Ryan M, Valentina D 2022 Astrophys. J. Lett. 1 L7Google Scholar

    [10]

    Abbott B P, et al. (LIGO Scientific and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [11]

    Antonino C 2023 EPJ Web of Conferences RICAP-22 280 03003Google Scholar

    [12]

    Hofacker C 2020 Aerospace Am. 58 10

    [13]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [14]

    李卫, 谢超帮, 李庆回, 鞠明健, 武志学, 郑耀辉 2023 量子光学学报 29 040201Google Scholar

    Li W, Xie C B, Li Q H, Ju M J, Wu Z X, Zheng Y H 2023 J. Quantum Optics 29 040201Google Scholar

    [15]

    Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13 294Google Scholar

    [16]

    郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才 2024 物理学报 73 050401Google Scholar

    Guo X Q, Zhou J, Wang C X, Qin C, Guo C Z, Li G, Zhang P F, Zhang T C 2024 Acta Phys. Sin. 73 050401Google Scholar

    [17]

    Vahlbruch H, Wilken D, Mehmet M 2018 Phys. Rev. Lett. 121 173601Google Scholar

    [18]

    Acernese F, Agathos M. 2019 Phys. Rev. Lett. 123 2311081Google Scholar

    [19]

    Benno W, Peter K, Rick S, Peter F 2011 Pre-Stabilized Laser Design Requirements LIGO-T050036-v4

    [20]

    Rollins J, Ottaway D, Zucker M, Weiss R, Abbott R 2004 Opt. Lett. 29 1876Google Scholar

    [21]

    Patrick K, Benno W, Karsten D 2009 Opt. Lett. 34 2912Google Scholar

    [22]

    Jonas J, Patrick O, Benno W 2017 Opt. Lett. 42 755Google Scholar

    [23]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y 2022 Acta Phys. Sin. 71 209501Google Scholar

    [24]

    Michael T, Gerhard H 2006 Measurement 39 12Google Scholar

    [25]

    Fabian M, Benno W 2022 Instruments 15 1Google Scholar

    [26]

    Cooley J W, Tukey J W 1965 Math. Comput. 19 297Google Scholar

    [27]

    Welch P D 1967 IEEE Trans. Audio Electroacoust. 15 70Google Scholar

    [28]

    张骥, 魏珊珊, 刘昊炜, 刘元煌, 姚波, 毛庆和 2021 中国激光 48 0301002Google Scholar

    Zhang J, Wei S S, Liu H W, Liu Y H, Yao B, Mao Q H 2021 Chin. J. Lasers 48 0301002Google Scholar

    [29]

    郑立昂, 李番, 王嘉伟, 李健博, 高丽, 贺子洋, 尚鑫, 尹王保, 田龙, 杨文海, 郑耀辉 2023 光学学报 52 0552220Google Scholar

    Zheng L A, Li F, Wang J W, Li J B, Gao L, He Z Y, Shang X, Yin W B, Tian L, Yang W H, Zheng Y H 2023 Acta Photonica Sin. 52 0552220Google Scholar

    [30]

    Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quant. Grav. 27 084023Google Scholar

    [31]

    Patrick K, Frank S, Benno W, Karsten D 2007 Rev. Sci. Instrum. 78 073103Google Scholar

    [32]

    Frank S, Patrick K, Michèle H, Benno W, Karsten D 2006 Opt. Lett. 13 2000Google Scholar

    [33]

    Jennrich O, Newton G, Skeldon K D, Hough J 2002 Opt. Com. 205 405Google Scholar

    [34]

    刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2025 量子光学学报 31 040201Google Scholar

    Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2025 J. Quantum Opt. 31 040201Google Scholar

  • 图 1  地基引力波探测频段激光强度噪声测试评估系统架构

    Figure 1.  Architecture of laser intensity noise measurement and evaluation system.

    图 2  地基引力波探测频段激光强度噪声评估系统程序流程图

    Figure 2.  Program flow chart of laser intensity noise evaluation system for ground-based GW detection.

    图 4  高精度测试仪器本底噪声表征 (a) FFT分析仪测试结果; (b)外加前置放大器后电子学噪声测试结果

    Figure 4.  Electronic noise characterization of high precision instruments: (a) The test result of FFT; (b) the electronic noise characterization of pre-amplifier.

    图 3  地基引力波探测频段激光强度噪声评估系统实验装置示意图, 其中Laser为激光器; ISO为光隔离器; λ/4为λ/4波片; λ/2为λ/2波片; PBS为偏振分束棱镜; BS为分束棱镜; len为f = 50 mm透镜; PD为光电探测器; PA为前置放大器; FFT analyzer为傅里叶分析仪; OSC为示波器; Vref为参考电压源; PC为计算机

    Figure 3.  Evaluation system for laser intensity noise at ground-based gravitational wave detection frequency band, where Laser is soild state laser, ISO is isolator, λ/4 is λ/4 waveplate, λ/2 is λ/2 waveplate, PBS is polarization beam splitter, BS is beam splitter, len is f = 50 mm len, PD is photodetector, PA is pre-amplifier, FFT analyzer is SR760, OSC is oscilloscope, Vref is voltage reference, PC is computer.

    图 5  信号源验证结果

    Figure 5.  Verification results with 1 mV sinusoidal signal.

    图 6  (a)光电探测器原理图; (b)不同探测器性能对比测试

    Figure 6.  (a) Schematic diagram of PD; (b) the contrast test of different PD’s performance.

    图 7  不同商用激光器输出激光相对强度噪声测试结果

    Figure 7.  Test relative intensity noise results of different commercial lasers.

  • [1]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2Google Scholar

    [2]

    Schmidt P 2019 J. Phys. Conf. Ser. 1468 012218Google Scholar

    [3]

    Patrick K 2010 Ph. D. Dissertation (Hannover: Vom Fachbereich Physik der Universiät Hannover

    [4]

    Anza S 2005 Classical Quant. Grav. 22 S125Google Scholar

    [5]

    Rer N 2005 Ph. D Dissertation (Hannover: Vom Fachbereich Physik der Universiät Hannover

    [6]

    Armano M, et al. (LIGO Scientific and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 231101Google Scholar

    [7]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [8]

    Ran D 2024 J. Cosmol. Astropart. Phys. 2 16Google Scholar

    [9]

    Daniel J, Andrew Z, Ryan M, Valentina D 2022 Astrophys. J. Lett. 1 L7Google Scholar

    [10]

    Abbott B P, et al. (LIGO Scientific and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [11]

    Antonino C 2023 EPJ Web of Conferences RICAP-22 280 03003Google Scholar

    [12]

    Hofacker C 2020 Aerospace Am. 58 10

    [13]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [14]

    李卫, 谢超帮, 李庆回, 鞠明健, 武志学, 郑耀辉 2023 量子光学学报 29 040201Google Scholar

    Li W, Xie C B, Li Q H, Ju M J, Wu Z X, Zheng Y H 2023 J. Quantum Optics 29 040201Google Scholar

    [15]

    Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13 294Google Scholar

    [16]

    郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才 2024 物理学报 73 050401Google Scholar

    Guo X Q, Zhou J, Wang C X, Qin C, Guo C Z, Li G, Zhang P F, Zhang T C 2024 Acta Phys. Sin. 73 050401Google Scholar

    [17]

    Vahlbruch H, Wilken D, Mehmet M 2018 Phys. Rev. Lett. 121 173601Google Scholar

    [18]

    Acernese F, Agathos M. 2019 Phys. Rev. Lett. 123 2311081Google Scholar

    [19]

    Benno W, Peter K, Rick S, Peter F 2011 Pre-Stabilized Laser Design Requirements LIGO-T050036-v4

    [20]

    Rollins J, Ottaway D, Zucker M, Weiss R, Abbott R 2004 Opt. Lett. 29 1876Google Scholar

    [21]

    Patrick K, Benno W, Karsten D 2009 Opt. Lett. 34 2912Google Scholar

    [22]

    Jonas J, Patrick O, Benno W 2017 Opt. Lett. 42 755Google Scholar

    [23]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y 2022 Acta Phys. Sin. 71 209501Google Scholar

    [24]

    Michael T, Gerhard H 2006 Measurement 39 12Google Scholar

    [25]

    Fabian M, Benno W 2022 Instruments 15 1Google Scholar

    [26]

    Cooley J W, Tukey J W 1965 Math. Comput. 19 297Google Scholar

    [27]

    Welch P D 1967 IEEE Trans. Audio Electroacoust. 15 70Google Scholar

    [28]

    张骥, 魏珊珊, 刘昊炜, 刘元煌, 姚波, 毛庆和 2021 中国激光 48 0301002Google Scholar

    Zhang J, Wei S S, Liu H W, Liu Y H, Yao B, Mao Q H 2021 Chin. J. Lasers 48 0301002Google Scholar

    [29]

    郑立昂, 李番, 王嘉伟, 李健博, 高丽, 贺子洋, 尚鑫, 尹王保, 田龙, 杨文海, 郑耀辉 2023 光学学报 52 0552220Google Scholar

    Zheng L A, Li F, Wang J W, Li J B, Gao L, He Z Y, Shang X, Yin W B, Tian L, Yang W H, Zheng Y H 2023 Acta Photonica Sin. 52 0552220Google Scholar

    [30]

    Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quant. Grav. 27 084023Google Scholar

    [31]

    Patrick K, Frank S, Benno W, Karsten D 2007 Rev. Sci. Instrum. 78 073103Google Scholar

    [32]

    Frank S, Patrick K, Michèle H, Benno W, Karsten D 2006 Opt. Lett. 13 2000Google Scholar

    [33]

    Jennrich O, Newton G, Skeldon K D, Hough J 2002 Opt. Com. 205 405Google Scholar

    [34]

    刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2025 量子光学学报 31 040201Google Scholar

    Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2025 J. Quantum Opt. 31 040201Google Scholar

  • [1] Shang Xin, Li Fan, Ma Zheng-Lei, Huang Tian-Shi, Dang Hao, Li Wei, Yin Wang-Bao, Tian Long, Chen Li-Rong, Zheng Yao-Hui. Low noise photodetector in 0.1 mHz-1 Hz band. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241635
    [2] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [3] Ruan Yuan-Dong, Zhang Zhi-Hao, Jia Jiang-Xie, Gu Yu-Ning, Zhang Shan-Duan, Cui Xu-Gao, Hong Wei, Bai Yan-Zheng, Tian Peng-Fei. Application of ultraviolet light sources in charge management systems for space gravitational wave detection. Acta Physica Sinica, 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [4] Li Pei, Dong Zhi-Yong, Guo Hong-Xia, Zhang Feng-Qi, Guo Ya-Xin, Peng Zhi-Gang, He Chao-Hui. Investigation of laser-induced single event effect on SiGe BiCMOS low noise amplifiers. Acta Physica Sinica, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [5] Guo Xi-Qing, Zhou Jing, Wang Chen-Xi, Qin Chen, Guo Cheng-Zhe, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Residual gas noises in vacuum of optical interferometer for ground-based gravitational wave detection. Acta Physica Sinica, 2024, 73(5): 050401. doi: 10.7498/aps.73.20231462
    [6] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [7] Wang Jia-Wei, Li Jian-Bo, Li Fan, Zheng Li-Ang, Gao Zi-Chao, An Bing-Nan, Ma Zheng-Lei, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Programmable precision voltage reference source for space-based gravitational wave detection. Acta Physica Sinica, 2023, 72(4): 049502. doi: 10.7498/aps.72.20222119
    [8] Wang Kai, Lin Bai-Ke, Song You-Jian, Meng Fei, Lin Yi-Ge, Cao Shi-Ying, Hu Ming-Lie, Fang Zhan-Jun. Low-noise microwave generation based on optical-microwave synchronization. Acta Physica Sinica, 2022, 71(4): 044204. doi: 10.7498/aps.71.20211253
    [9] Cao Ruo-Lin, Peng Qing-Xuan, Wang Jin-Dong, Chen Yong-Jie, Huang Yun-Fei, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Real-time polarization compensation system for wavelength division multiplexing in low noise fiber channel based on single photon counting feedback. Acta Physica Sinica, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [10] Li Fan, Wang Jia-Wei, Gao Zi-Chao, Li Jian-Bo, An Bing-Nan, Li Rui-Xin, Bai Yu, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Laser intensity noise evaluation system for space-based gravitational wave detection. Acta Physica Sinica, 2022, 71(20): 209501. doi: 10.7498/aps.71.20220841
    [11] Li Qing-Hui, Li Wei, Sun Yu, Wang Ya-Jun, Tian Long, Chen Li-Rong, Zhang Peng-Fei, Zheng Yao-Hui. Laser parameters requirement for third-generation ground-based gravitational wave detection. Acta Physica Sinica, 2022, 71(16): 164203. doi: 10.7498/aps.71.20220552
    [12] Liu Lei, Xu Zhi-Bo, Qian Wen-Shuo, Li Wen-Jie, Xie Fang, Zhong Zhi, Shan Ming-Guang. Low-noise hierarchical phase unwrapping method for dual-wavelength digital holography using two synthetical wavelengths. Acta Physica Sinica, 2021, 70(22): 224204. doi: 10.7498/aps.70.20210669
    [13] Huang Guan, Geng Chao, Li Feng, Li Xin-Yang, Lv Guo-Yun, Fan Yang-Yu. Influence of photoelectric conversion noise on closed-loop performance of adaptive SMF coupling device. Acta Physica Sinica, 2021, 70(22): 224212. doi: 10.7498/aps.70.20210615
    [14] Low-noise microwave generation based on optical-microwave synchronization. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211253
    [15] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [16] Han Hao-Xuan, Zhang Guo-Feng, Zhang Xue, Liang Tian-Tian, Ying Li-Liang, Wang Yong-Liang, Peng Wei, Wang Zhen. Design and fabrication of low-noise superconducting quantum interference device magnetometer. Acta Physica Sinica, 2019, 68(13): 138501. doi: 10.7498/aps.68.20190483
    [17] Guan Jia, Gu Yi-Sheng, Zhu Cheng-Jie, Yang Ya-Ping. Low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium. Acta Physica Sinica, 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [18] Li Cheng-Qiang, Wang Ting-Feng, Zhang He-Yong, Xie Jing-Jiang, Liu Li-Sheng, Guo Jin. Effect of laser linewidth on the performance of heterodyne detection. Acta Physica Sinica, 2016, 65(8): 084206. doi: 10.7498/aps.65.084206
    [19] Yan Zhen-Gang, Lin Ying-Lu, Yang Juan, Li Zhen-Hua, Bian Bao-Min. The distribution functions of characteristic quantities for random noise signal of photodetector. Acta Physica Sinica, 2012, 61(20): 200502. doi: 10.7498/aps.61.200502
    [20] Wang Jin-Dong, Lu Wei, Zhao Feng, Liu Xiao-Bao, Guo Bang-Hong, Zhang Jing, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao. The experimental research on a stable free-space quantum key distribution system with low noise. Acta Physica Sinica, 2008, 57(7): 4214-4218. doi: 10.7498/aps.57.4214
Metrics
  • Abstract views:  297
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  19 September 2024
  • Accepted Date:  16 December 2024
  • Available Online:  19 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回