Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-concentration diamond nitrogen vacancy color center fabricated by microwave plasma chemical vapor deposition and its properties

LIU Housheng GUO Shifeng CHEN Ming ZHANG Guokai GUO Chong GAO Xuedong YU Cui

Citation:

High-concentration diamond nitrogen vacancy color center fabricated by microwave plasma chemical vapor deposition and its properties

LIU Housheng, GUO Shifeng, CHEN Ming, ZHANG Guokai, GUO Chong, GAO Xuedong, YU Cui
cstr: 32037.14.aps.74.20241438
PDF
HTML
Get Citation
  • Diamond nitrogen vacancy (NV) color centers have good stability at room temperature and long electron spin coherence time, and can be manipulated by lasers and microwaves, thereby becoming the most promising structure in the field of quantum detection. Within a certain range, the higher the concentration of NV color centers, the higher the sensitivity of detecting physical quantities is. Therefore, it is necessary to dope sufficient nitrogen atoms into diamond single crystals to form high-concentration NV color centers. In this study, diamond single crystals with different nitrogen content are prepared by microwave plasma chemical vapor deposition (MPCVD) to construct high-concentration NV color centers. By doping different amounts of nitrogen atoms into the precursor gas, many problems encountered during long-time growth of diamond single crystals under high nitrogen conditions are solved. Diamond single crystals with nitrogen content of about 0.205, 5, 8, 11, 15, 36, and 54 ppm (1 ppm = 10–6) are prepared. As the nitrogen content increases, the width of the step flow on the surface of the diamond single crystal gradually widens, eventually the step flow gradually disappears and the surface becomes smooth. Under the experimental conditions in this study, it is preliminarily determined that the average ratio of the nitrogen content in the precursor gas to the nitrogen atom content introduced into the diamond single crystal lattice is about 11. Fourier transform infrared spectroscopy shows that as the nitrogen content inside the CVD diamond single crystal increases, the density of vacancy defects also increases. Therefore, the color of CVD high nitrogen diamond single crystals ranges from light brown to brownish black. Compared with HPHT diamond single crystal, the CVD high nitrogen diamond single crystal has a weak intensity of absorption peak at 1130 cm–1 and no absorption peak at 1280 cm–1. Three obvious nitrogen-related absorption peaks at 1371, 1353, and 1332 cm–1 of the CVD diamond single crystal are displayed. Nitrogen atoms mainly exist in the form of aggregated nitrogen and single substitutional N+ in diamond single crystals, rather than in the form of C-defect. The PL spectrum results show that defects such as vacancies inside the diamond single crystal with nitrogen content of 54 ppm are significantly increased after electron irradiation, leading to a remarkable increase in the concentration of NV color centers. The magnetic detection performance of the NV color center material after irradiation is verified, and the fluorescence intensity is uniformly distributed in the sample surface. The diamond single crystal with nitrogen content of 54 ppm has good microwave spin manipulation, and its longitudinal relaxation time is about 3.37 ms.
      Corresponding author: LIU Housheng, hsliu_cvddiamond@163.com ; YU Cui, yucui1@163.com
    [1]

    李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 物理学报 66 230601Google Scholar

    Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar

    [2]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [3]

    Acosta V, Hemmer P 2013 MRS Bull. 38 127Google Scholar

    [4]

    吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星 2020 金刚石与磨料磨具工程 40 42Google Scholar

    Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020 Diamond & Abrasives Engineering 40 42Google Scholar

    [5]

    刘勇, 林豪彬, 张少春, 董杨, 陈向东, 孙方稳 2023 激光与光电子学进展 60 11Google Scholar

    Liu Y, Lin H B, Zhang S C, Dong Y, Chen X D, Sun F W 2023 Laser Optoelectron. P. 60 11Google Scholar

    [6]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [7]

    Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar

    [8]

    Gao X D, Yu C, Zhang S C, Lin H B, Guo J C, Ma M Y, Feng Z H, Sun F W 2023 Diam. Relat. Mater. 139 110348Google Scholar

    [9]

    李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊 2021 物理学报 70 147601Google Scholar

    Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J, Liu J 2021 Acta Phys. Sin. 70 147601Google Scholar

    [10]

    Karki P B, Timalsina R, Dowran M, Aregbesola A E, Laraoui A, Ambal K 2023 Diam. Relat. Mater. 140 110472Google Scholar

    [11]

    房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 128101Google Scholar

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 128101Google Scholar

    [12]

    李勇, 冯云光, 金慧, 贾晓鹏, 马红安 2015 人工晶体学报 44 2984Google Scholar

    Li Y, Feng Y G, Jin H, Jia X P, Ma H A 2015 J. Synthetic Cryst. 44 2984Google Scholar

    [13]

    李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安 2016 物理学报 65 118103Google Scholar

    Li Y, Li Z B, Song M S, Wang Y, Jia X P, Ma H A 2016 Acta Phys. Sin. 65 118103Google Scholar

    [14]

    Kanda H, Akaishi M, Yamaoka S 1999 Diam. Relat. Mater. 8 1441Google Scholar

    [15]

    Zaitsev A M, Kazuchits N M, Kazuchits V N, Moe K S, Rusetsky M S, Korolik O V, Kitajima K, Butler J E, Wang W 2020 Diam. Relat. Mater. 105 107794Google Scholar

    [16]

    李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756Google Scholar

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756Google Scholar

    [17]

    刘志杰, 张卫, 张剑云, 万永中, 王季陶 1999 无机材料学报 14 114Google Scholar

    Liu Z J, Zhang W, Zhang J Y, Wan Y Z, Wang J T 1999 J. Inor. mater. 14 114Google Scholar

    [18]

    李建军, 范澄兴, 程佑法, 刘雪松, 王岳, 山广祺, 李婷, 李桂华, 丁秀云, 赵潇雪 2021 人工晶体学报 50 0158Google Scholar

    Li J J, Fan C X, Cheng Y F, Liu X S, Wang Y, Shan G Q, Li T, Li G H, Ding X Y, Zhao X X 2021 J. Synthetic Cryst. 50 0158Google Scholar

    [19]

    Jani M, Mrózek M, Nowakowska A M, Leszczenko P, Gawlik W, Wojciechowski A M 2023 Phys. Status Solidi (a) 220 2200299Google Scholar

    [20]

    梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 物理学报 58 8039Google Scholar

    Liang Z Z, Liang J Q, Zhen N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039Google Scholar

    [21]

    颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101Google Scholar

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101Google Scholar

    [22]

    吕青, 焦永鑫, 葛跃进, 肖丙建, 褚志远, 刘淑桢 2021 地球学报 42 895Google Scholar

    Lv Q, Jiao Y X, Ge Y J, Xiao B J, Chu Z Y, Liu S Z, 2021 J. Acta Geol. Sin. 42 895Google Scholar

    [23]

    Howell C, O’Neill C J, Grant K J, Griffin W L, O’Reilly S Y, Pearson N J, Stern R A, Stachel T 2012 Contrib. Mineral Petr. 164 1011Google Scholar

    [24]

    Lawson S C, Fisher D, Hunt D C, Newton M E 1998 J. Phys. Condens. Matter. 10 6171Google Scholar

    [25]

    Vins V, Yelisseyev A, Terentyev S, Nosukhin S 2021 Diam. Relat. Mater. 118 108511Google Scholar

    [26]

    Jones R 2009 Diam. Relat. Mater. 18 820Google Scholar

    [27]

    李荣斌 2007 物理学报 56 395Google Scholar

    Li R B 2007 Acta Phys. Sin. 56 395Google Scholar

    [28]

    Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar

  • 图 1  金刚石单晶生长缺陷 (a)局部翘起; (b)多晶; (c)裂纹; (d)裂缝

    Figure 1.  Growth defect of diamond single crystals: (a) Local warped crystal faces; (b) polycrystalline; (c) cracks; (d) crevice.

    图 2  不同氮含量金刚石单晶表面形貌和实物图 (a) 1号; (b) 2号; (c) 3号; (d) 4号; (e) 5号; (f) 6号; (g) 7号; (h)样品实物图

    Figure 2.  Surface morphologies and pictures of different nitrogen content diamond single crystals: (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6; (g) Sample 7; (h) pictures of different samples.

    图 3  不同氮含量金刚石单晶生长速度

    Figure 3.  Growth speeds of different nitrogen content diamond single crystals.

    图 4  不同参数制备的金刚石单晶氮含量

    Figure 4.  Nitrogen contents of different diamond single crystals.

    图 5  HPHT法制备的高氮金刚石单晶实物图

    Figure 5.  Pictures of high nitrogen content diamond single crystal prepared by HPHT methods.

    图 6  金刚石单晶样品红外光谱

    Figure 6.  FTIR spectra of diamond single cyrstals.

    图 7  样品辐照前后PL光谱

    Figure 7.  PL spectra of diamond single cyrstals before and after irradiation.

    图 8  (a)测试示意图; (b)荧光Mapping; (c)不同微波功率下的ODMR曲线; (d)施加偏置磁场后的ODMR曲线; (e)拉比振荡曲线; (f)纵向弛豫时间

    Figure 8.  (a) Test schematic diagram; (b) fluorescence Mapping; (c) ODMR curves at different microwave powers; (d) ODMR curve after applying a biased magnetic field; (e) Rabi oscillation curve; (f) longitudinal relaxation time.

    表 1  生长工艺参数(1 Torr = 1.33 × 102 Pa)

    Table 1.  Growth process parameters (1 Torr = 1.33 × 102 Pa).

    样品编号CH4/sccmH2/sccmN 掺杂量/ppmO2/sccm微波功率/kW生长压力/Torr生长温度/℃生长时间/h
    1930030.85180880100
    29300600.85180880100
    39300900.85180880100
    493001200.85180880100
    593001500.85180880100
    693003500.85180880100
    793004800.85180880100
    DownLoad: CSV
  • [1]

    李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 物理学报 66 230601Google Scholar

    Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar

    [2]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [3]

    Acosta V, Hemmer P 2013 MRS Bull. 38 127Google Scholar

    [4]

    吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星 2020 金刚石与磨料磨具工程 40 42Google Scholar

    Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020 Diamond & Abrasives Engineering 40 42Google Scholar

    [5]

    刘勇, 林豪彬, 张少春, 董杨, 陈向东, 孙方稳 2023 激光与光电子学进展 60 11Google Scholar

    Liu Y, Lin H B, Zhang S C, Dong Y, Chen X D, Sun F W 2023 Laser Optoelectron. P. 60 11Google Scholar

    [6]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [7]

    Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar

    [8]

    Gao X D, Yu C, Zhang S C, Lin H B, Guo J C, Ma M Y, Feng Z H, Sun F W 2023 Diam. Relat. Mater. 139 110348Google Scholar

    [9]

    李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊 2021 物理学报 70 147601Google Scholar

    Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J, Liu J 2021 Acta Phys. Sin. 70 147601Google Scholar

    [10]

    Karki P B, Timalsina R, Dowran M, Aregbesola A E, Laraoui A, Ambal K 2023 Diam. Relat. Mater. 140 110472Google Scholar

    [11]

    房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 128101Google Scholar

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 128101Google Scholar

    [12]

    李勇, 冯云光, 金慧, 贾晓鹏, 马红安 2015 人工晶体学报 44 2984Google Scholar

    Li Y, Feng Y G, Jin H, Jia X P, Ma H A 2015 J. Synthetic Cryst. 44 2984Google Scholar

    [13]

    李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安 2016 物理学报 65 118103Google Scholar

    Li Y, Li Z B, Song M S, Wang Y, Jia X P, Ma H A 2016 Acta Phys. Sin. 65 118103Google Scholar

    [14]

    Kanda H, Akaishi M, Yamaoka S 1999 Diam. Relat. Mater. 8 1441Google Scholar

    [15]

    Zaitsev A M, Kazuchits N M, Kazuchits V N, Moe K S, Rusetsky M S, Korolik O V, Kitajima K, Butler J E, Wang W 2020 Diam. Relat. Mater. 105 107794Google Scholar

    [16]

    李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756Google Scholar

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756Google Scholar

    [17]

    刘志杰, 张卫, 张剑云, 万永中, 王季陶 1999 无机材料学报 14 114Google Scholar

    Liu Z J, Zhang W, Zhang J Y, Wan Y Z, Wang J T 1999 J. Inor. mater. 14 114Google Scholar

    [18]

    李建军, 范澄兴, 程佑法, 刘雪松, 王岳, 山广祺, 李婷, 李桂华, 丁秀云, 赵潇雪 2021 人工晶体学报 50 0158Google Scholar

    Li J J, Fan C X, Cheng Y F, Liu X S, Wang Y, Shan G Q, Li T, Li G H, Ding X Y, Zhao X X 2021 J. Synthetic Cryst. 50 0158Google Scholar

    [19]

    Jani M, Mrózek M, Nowakowska A M, Leszczenko P, Gawlik W, Wojciechowski A M 2023 Phys. Status Solidi (a) 220 2200299Google Scholar

    [20]

    梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 物理学报 58 8039Google Scholar

    Liang Z Z, Liang J Q, Zhen N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039Google Scholar

    [21]

    颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101Google Scholar

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101Google Scholar

    [22]

    吕青, 焦永鑫, 葛跃进, 肖丙建, 褚志远, 刘淑桢 2021 地球学报 42 895Google Scholar

    Lv Q, Jiao Y X, Ge Y J, Xiao B J, Chu Z Y, Liu S Z, 2021 J. Acta Geol. Sin. 42 895Google Scholar

    [23]

    Howell C, O’Neill C J, Grant K J, Griffin W L, O’Reilly S Y, Pearson N J, Stern R A, Stachel T 2012 Contrib. Mineral Petr. 164 1011Google Scholar

    [24]

    Lawson S C, Fisher D, Hunt D C, Newton M E 1998 J. Phys. Condens. Matter. 10 6171Google Scholar

    [25]

    Vins V, Yelisseyev A, Terentyev S, Nosukhin S 2021 Diam. Relat. Mater. 118 108511Google Scholar

    [26]

    Jones R 2009 Diam. Relat. Mater. 18 820Google Scholar

    [27]

    李荣斌 2007 物理学报 56 395Google Scholar

    Li R B 2007 Acta Phys. Sin. 56 395Google Scholar

    [28]

    Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar

  • [1] Shen Yuan-Yuan, Wang Bo, Ke Dong-Qian, Zheng Dou-Dou, Li Zhong-Hao, Wen Huan-Fei, Guo Hao, Li Xin, Tang Jun, Ma Zong-Min, Li Yan-Jun, Igor Vladimirovich Yaminsky, Liu Jun. High-frequency resolution diamond nitrogen-vacancy center wide-spectrum imaging technology. Acta Physica Sinica, 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [2] He Jian, Jia Yan-Wei, Tu Ju-Ping, Xia Tian, Zhu Xiao-Hua, Huang Ke, An Kang, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming. Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation. Acta Physica Sinica, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [3] Yang Zhi-Ping, Kong Xi, Shi Fa-Zhan, Du Jiang-Feng. Phase transition observation of nanoscale water on diamond surface. Acta Physica Sinica, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [4] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [5] Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei. Coherent electrical control of single electron spin in diamond nitrogen-vacancy center. Acta Physica Sinica, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [6] Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen. Temperature sensing with nitrogen vacancy center in diamond. Acta Physica Sinica, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [7] Phase Transition Observation of Nanoscale Water on Diamond Surface. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211348
    [8] Zhao Peng-Ju, Kong Fei, Li Rui, Shi Fa-Zhan, Du Jiang-Feng. Nanoscale zero-field detection based on single solid-state spins in diamond. Acta Physica Sinica, 2021, 70(21): 213301. doi: 10.7498/aps.70.20211363
    [9] Shen Xiang, Zhao Li-Ye, Huang Pu, Kong Xi, Ji Lu-Min. Atomic spin and phonon coupling mechanism of nitrogen-vacancy center. Acta Physica Sinica, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [10] Feng Yuan-Yao, Li Zhong-Hao, Zhang Yang, Cui Ling-Xiao, Guo Qi, Guo Hao, Wen Huan-Fei, Liu Wen-Yao, Tang Jun, Liu Jun. Optimization of optical control of nitrogen vacancy centers in solid diamond. Acta Physica Sinica, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [11] Dong Yang, Du Bo, Zhang Shao-Chun, Chen Xiang-Dong, Sun Fang-Wen. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [12] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [13] Li Lu-Si, Li Hong-Hui, Zhou Li-Li, Yang Zhi-Sheng, Ai Qing. Measurement of weak static magnetic field with nitrogen-vacancy color center. Acta Physica Sinica, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [14] Feng Ming-Chun, Xu Liang, Liu Wen-Qing, Liu Jian-Guo, Gao Min-Guang, Wei Xiu-Li. Investigation of detecting biological aerosol by passive Fourier transform infrared spectroscopy technology based on MODTRAN model. Acta Physica Sinica, 2016, 65(1): 014210. doi: 10.7498/aps.65.014210
    [15] Zhang Yong-Sheng, Qiu Yang, Zhang Chao-Xiang, Li Hua, Zhang Shu-Lin, Wang Yong-Liang, Xu Xiao-Feng, Ding Hong-Sheng, Kong Xiang-Yan. Multi-channel magnetocardiogardiography system calibration. Acta Physica Sinica, 2014, 63(22): 228501. doi: 10.7498/aps.63.228501
    [16] Jiao Yang, Xu Liang, Gao Min-Guang, Jin Ling, Tong Jing-Jing, Li Sheng, Wei Xiu-Li. Real-time data processing of remote measurement of air pollution by infrared passive scanning imaging system. Acta Physica Sinica, 2013, 62(14): 140705. doi: 10.7498/aps.62.140705
    [17] Liu Dong-Qi, Chang Yan-Chun, Liu Gang-Qin, Pan Xin-Yu. Electron spin studies of nitrogen vacancy centers in nanodiamonds. Acta Physica Sinica, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [18] Li Xiang-Xian, Gao Min-Guang, Xu Liang, Tong Jing-Jing, Wei Xiu-Li, Feng Ming-Chun, Jin Ling, Wang Ya-Ping, Shi Jian-Guo. Carbon isotope ratio analysis in CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [19] Liu Zhi-Ming, Liu Wen-Qing, Gao Min-Guang, Tong Jing-Jing, Zhang Tian-Shu, Xu Liang, Wei Xiu-Li, Jin Ling, Wang Ya-Ping, Chen Jun. Study of the retrieval algorithm of emission gas spatio-temporal distribution of pollution source using the infrared solar occultation flux (SOF) method. Acta Physica Sinica, 2010, 59(8): 5397-5405. doi: 10.7498/aps.59.5397
    [20] XIN YU, NING ZHAO-YUAN, GAN ZHAO-QIANG, LU XIN-HUA, FANG LIANG, CHENG SHAN-HUA. INFRARED ANALYSIS OF BOND CONFIGURATION FOR THE a-C∶F∶H FILMS DEPOSITED AT VARIABLE CHF3/CH4 FLOW RATIOS. Acta Physica Sinica, 2001, 50(12): 2492-2496. doi: 10.7498/aps.50.2492
Metrics
  • Abstract views:  548
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2024
  • Accepted Date:  13 November 2024
  • Available Online:  10 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回