Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A novel LDMOS with dual-drift region and dual-conduction path with ultra-low specific on-resistance

DUAN Baoxing REN Yuhao TANG Chunping YANG Yintang

Citation:

A novel LDMOS with dual-drift region and dual-conduction path with ultra-low specific on-resistance

DUAN Baoxing, REN Yuhao, TANG Chunping, YANG Yintang
cstr: 32037.14.aps.74.20241554
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to improve the contradictory between specific on-resistance (Ron,sp) and breakdown voltage (BV) of lateral double-diffused metal oxide semiconductor (LDMOS) and enhance the turn-off characteristic, this paper proposes a novel LDMOS device with dual-drift regions and dual-conduction paths, which achieves an ultra-low Ron,sp. The key feature of the proposed device is the introduction of a dual-drift region structure with alternating P-type and N-type regions, combined with planar and trench gates to control the P-type and N-type drift regions, respectively. This configuration enables the formation of two independent electron conduction paths within the drift region. When a positive voltage is applied to the planar gate, a voltage difference is generated between the surface of the P-type drift region and the body of device’s drift. Therefore, under the influence of the voltage difference, the electrons are pulled to the surface of the P-type drift region to invert and form a high-density electron inversion layer that connects the channel and the N+ drain, significantly increasing the electron density during conduction and reducing the Ron,sp. The introduction of the trench gate provides an additional electron disappearance path, which shortens the device's turn-off time (toff). Furthermore, the introduction of the P-type drift region facilitates the recombination of electrons with holes within the P-type drift region, accelerating the electron disappearance process and further reducing the device’s toff. Furthermore, the proposed device exhibits a more uniform electric field distribution and higher voltage capability is due to the P+N-N+P+ structure adopted in the PolySi-top layer. During the off-state, both the P+N- junctions and the N+P+ junctions generate electric field peaks at the interfaces. These peaks modulate the electric field distribution across the surface of the drift region. Simulation results indicate that at the BV with a level of 200V, the proposed LDMOS exhibits an Ron,sp of 3.43 mΩ·cm² and a toff of 9 ns. Compared with conventional LDMOS devices, the proposed LDMOS possesses a 90% reduction in Ron,sp and an 11.6% decrease in toff. The proposed device not only achieves an excellent trade-off between Ron,sp and BV but also shortens the toff, demonstrating that the device achieves superior performance.
      Corresponding author: DUAN Baoxing, bxduan@163.com
    [1]

    Kong M, Yi B, Zhang B 2019 IEEE T. Electron. Dev. 66 592Google Scholar

    [2]

    Disney D, Chan W, Lam R, Blattner R, Ma S, Seng W, Chen J W, Cornell M, Williams R 2008 20th International Symposium on Power Semiconductor Devices and IC’s Orlando, FL, USA, May 18–22, 2008 pp24–27

    [3]

    Sun W, Shi L, Sun Z, Yi Y, Li H, Lu S 2006 IEEE T. Electron. Dev. 53 891Google Scholar

    [4]

    Erlbacher T, Bauer A J, Frey L 2010 IEEE Electron Device Lett. 31 464Google Scholar

    [5]

    Qiao M, Li Y, Zhou X, Li Z, Zhang B 2014 IEEE Electron Device Lett. 35 774Google Scholar

    [6]

    Baliga B J 2001 Proc. IEEE 89 822Google Scholar

    [7]

    Efland T R, Tsai C Y, Pendharkar S 1998 International Electron Devices Meeting 1998 San Francisco, CA, USA, December 6–9, 1998 pp679–682

    [8]

    Li M, Chen D, Jung D S, Shi X 2019 2019 China Semiconductor Technology International Conference Shanghai, China, March 17–18, 2019, pp1–3

    [9]

    Baliga B J 2023 Springer Handbook of Semiconductor Devices (Cham: Springer Nature) pp491–523

    [10]

    Baliga B J 2019 Fundamentals of Power Semiconductor Devices (Cham: Springer International Publishing

    [11]

    Appels J A, Vaes H M J 1979 1979 International Electron Devices Meeting December, 1979, pp238–241

    [12]

    Hossain Z 2008 2008 20th International Symposium on Power Semiconductor Devices and IC’s Orlando, FL, USA, May 18–22, 2008 pp133–136

    [13]

    Xiarong H, Bo Z, Xiaorong L, Guoliang Y, Xi C, Zhaoji L 2011 J. Semicond. 32 074006Google Scholar

    [14]

    Hardikar S, Tadikonda R, Green D W, Vershinin K V, Narayanan E M S 2004 IEEE T. Electron. Dev. 51 2223Google Scholar

    [15]

    Stengl R, Gosele U 1985 1985 International Electron Devices Washington, DC, USA, December 1–4, 1985 pp154–157

    [16]

    Duan B, Xing L, Wang Y, Yang Y 2022 IEEE T. Electron. Dev. 69 658Google Scholar

    [17]

    Chen Y, Hu S, Cheng K, Jiang Y, Luo J, Wang J, Tang F, Zhou X, Zhou J, Gan P 2016 Micro. Nanostructures 89 59

    [18]

    Fujihira T 1997 Jpn. J. Appl. Phys. 36 6254Google Scholar

    [19]

    Chen X B 2000 Chin. J. Electron. 9 6

    [20]

    Baliga B J, Syau T, Venkatraman P 1992 IEEE Electron Device Lett. 13 427Google Scholar

    [21]

    Wang Y D, Duan B X, Song H T, Yang Y T 2021 IEEE T. Electron. Dev. 68 2414Google Scholar

    [22]

    Inc. Synopsys 2016 SentaurusTM Device User Guide Verison L-2016.03

    [23]

    Chen W Z, Qin H F, Zhang H S, Han Z S 2022 IEEE T. Electron. Dev. 69 1900Google Scholar

    [24]

    Zhou K, Luo X R, Li Z J, Zhang B 2015 IEEE T. Electron. Dev. 62 3334Google Scholar

    [25]

    Cao Z, Sun Q, Zhang H W, Wang Q, Ma C F, Jiao L C 2022 Micromachines 13 843Google Scholar

    [26]

    Cheng J, Zhang B, Li Z 2008 IEEE Electron Device Lett. 29 645Google Scholar

    [27]

    Chen Y M, Lee C L, Tsai M H, Lee C T, Wang C C 2018 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs Chicago, IL, USA, May 13–17, 2018 pp331–334

    [28]

    Zhang S, Tuan H C, Wu X J, Shi L, Wu J 2016 Microelectron. Reliab. 61 125Google Scholar

    [29]

    Chen W, Pjencak J, Agam M, Janssens J, Jerome R, Menon S, Griswold M 2021 2021 33rd International Symposium on Power Semiconductor Devices and ICs Nagoya, Japan, May 30–June 03, 2021 pp287–290

    [30]

    Qiao M, Liu W, Yuan L, Xu P, Ma C, Lin F, Liu K, Guo Y, Lin Z, Zhang S, Zhang B 2022 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs Vancouver, BC, Canada, May 22–25, 2022 pp149–152

    [31]

    Kong M, Yi B, Chen X 2019 2019 IEEE 13th International Conference on Power Electronics and Drive Systems Toulouse, France, July 09–12, 2019 pp1–4

    [32]

    Fan J, Wang Z G, Zhang B, Luo X R 2013 Chin. Phys. B 22 048501Google Scholar

    [33]

    Honarkhah S, Nassif-Khalil S, Salama C A T 2004 Proceedings of the 30th European Solid-State Circuits Conference Leuven, Belgium, September 23, 2004 pp117–120

    [34]

    Hölke A, Antoniou M, Udrea F 2020 2020 32nd International Symposium on Power Semiconductor Devices and ICs Vienna, Austria, September 13–18, 2020 pp435–438

  • 图 1  器件结构图 (a)传统LDMOS; (b) PND-DP LDMOS; (c) NND-DP LDMOS

    Figure 1.  Schematic cross-section: (a) Conventional LDMOS; (b) PND-DP LDMOS; (c) NND-DP LDMOS.

    图 2  器件工作原理图 (a) PND-DP LDMOS; (b) NND-DP LDMOS

    Figure 2.  Schematic of the proposed devices operation: (a) PND-DP LDMOS; (b) NND-DP LDMOS.

    图 3  PND-DP LDMOS器件工艺流程图

    Figure 3.  The fabricate process of PND-DP LDMOS.

    图 4  器件输出特性曲线

    Figure 4.  The Id-Vd curve of these three devices.

    图 5  器件漂移区电子浓度分布曲线 (a) PND-DP LDMOS; (b) NND-DP LDMOS

    Figure 5.  Distribution of the drift electron density: (a) PND-DP LDMOS; (b) NND-DP LDMOS.

    图 6  (a)击穿特性曲线; (b) Ntop对器件击穿特性的影响

    Figure 6.  (a) Breakdown characteristic curve; (b) the impact of Ntop on device breakdown characteristics.

    图 7  器件电场分布图 (a) 横向电场; (b)纵向电场

    Figure 7.  Device electric field distribution: (a) Lateral electric field; (b) vertical electric field.

    图 8  N-drift 对器件性能的影响 (a) BV; (b) Ron,sp; (c) FOM

    Figure 8.  The impact of N-drift on device performance: (a) BV; (b) Ron,sp; (c) FOM.

    图 9  本文所提出的PND-DP LDMOS与其他器件的Ron,sp-BV比较

    Figure 9.  Comparison of Ron,sp-BV between the proposed PND-DP LDMOS and others.

    图 10  器件动态特性 (a)测试电路结构; (b)关断特性曲线

    Figure 10.  Device dynamic characteristics: (a) Test circuit structure; (b) turn-off characteristic curve.

    表 1  器件仿真中的关键参数

    Table 1.  Key parameters of devices’ simulation.

    参数符号 参数含义 传统 PND-DP NND-DP
    Tox/μm 氧化层厚度 0.1 0.1 0.1
    LD/μm 漂移区长度 20 8.5 8.5
    TDP/TDN2/μm P-drift(N-drift2)的厚度 2 2 2
    TDN/TDN1/μm N-drift(N-drift1)的厚度 3 3
    Tb/μm N-buffer的厚度 3.5 3.5
    LCH/μm 沟道长度 1.5 1.5 1.5
    Tt/μm 槽栅的深度 2.1 2.1
    NDP/NDN2/cm–3 P-drift(N-drift2)的掺杂浓度 1×1015 1×1015
    NDN/NDN1/cm–3 N-drift(N-drift1) 的掺杂浓度 7.5×1015 2.5×1015 1.5×1015
    Ntop/cm–3 N-top的掺杂浓度 1×1015 1×1015
    Nsub/cm–3 衬底的掺杂浓度 3×1014 3×1014 3×1014
    DownLoad: CSV

    表 2  PND-DP LDMOS与其他器件的Ron,sp, BV, FOM

    Table 2.  Ron,sp, BV, and FOM of PND-DP LDMOS compared with other devices.

    Refs.Ron,sp/(mΩ·cm2)BV/VFOM/(MW·cm–2)
    [23]8.61502.6
    [24]18.63526.7
    [25]6.125110.3
    [26]5.925811.3
    [27]5.92268.7
    [28]11.32254.5
    [29]483172.1
    [30]8.32507.5
    This work3.421513.3
    5.126013.4
    7.631413.0
    12.136511.0
    DownLoad: CSV
  • [1]

    Kong M, Yi B, Zhang B 2019 IEEE T. Electron. Dev. 66 592Google Scholar

    [2]

    Disney D, Chan W, Lam R, Blattner R, Ma S, Seng W, Chen J W, Cornell M, Williams R 2008 20th International Symposium on Power Semiconductor Devices and IC’s Orlando, FL, USA, May 18–22, 2008 pp24–27

    [3]

    Sun W, Shi L, Sun Z, Yi Y, Li H, Lu S 2006 IEEE T. Electron. Dev. 53 891Google Scholar

    [4]

    Erlbacher T, Bauer A J, Frey L 2010 IEEE Electron Device Lett. 31 464Google Scholar

    [5]

    Qiao M, Li Y, Zhou X, Li Z, Zhang B 2014 IEEE Electron Device Lett. 35 774Google Scholar

    [6]

    Baliga B J 2001 Proc. IEEE 89 822Google Scholar

    [7]

    Efland T R, Tsai C Y, Pendharkar S 1998 International Electron Devices Meeting 1998 San Francisco, CA, USA, December 6–9, 1998 pp679–682

    [8]

    Li M, Chen D, Jung D S, Shi X 2019 2019 China Semiconductor Technology International Conference Shanghai, China, March 17–18, 2019, pp1–3

    [9]

    Baliga B J 2023 Springer Handbook of Semiconductor Devices (Cham: Springer Nature) pp491–523

    [10]

    Baliga B J 2019 Fundamentals of Power Semiconductor Devices (Cham: Springer International Publishing

    [11]

    Appels J A, Vaes H M J 1979 1979 International Electron Devices Meeting December, 1979, pp238–241

    [12]

    Hossain Z 2008 2008 20th International Symposium on Power Semiconductor Devices and IC’s Orlando, FL, USA, May 18–22, 2008 pp133–136

    [13]

    Xiarong H, Bo Z, Xiaorong L, Guoliang Y, Xi C, Zhaoji L 2011 J. Semicond. 32 074006Google Scholar

    [14]

    Hardikar S, Tadikonda R, Green D W, Vershinin K V, Narayanan E M S 2004 IEEE T. Electron. Dev. 51 2223Google Scholar

    [15]

    Stengl R, Gosele U 1985 1985 International Electron Devices Washington, DC, USA, December 1–4, 1985 pp154–157

    [16]

    Duan B, Xing L, Wang Y, Yang Y 2022 IEEE T. Electron. Dev. 69 658Google Scholar

    [17]

    Chen Y, Hu S, Cheng K, Jiang Y, Luo J, Wang J, Tang F, Zhou X, Zhou J, Gan P 2016 Micro. Nanostructures 89 59

    [18]

    Fujihira T 1997 Jpn. J. Appl. Phys. 36 6254Google Scholar

    [19]

    Chen X B 2000 Chin. J. Electron. 9 6

    [20]

    Baliga B J, Syau T, Venkatraman P 1992 IEEE Electron Device Lett. 13 427Google Scholar

    [21]

    Wang Y D, Duan B X, Song H T, Yang Y T 2021 IEEE T. Electron. Dev. 68 2414Google Scholar

    [22]

    Inc. Synopsys 2016 SentaurusTM Device User Guide Verison L-2016.03

    [23]

    Chen W Z, Qin H F, Zhang H S, Han Z S 2022 IEEE T. Electron. Dev. 69 1900Google Scholar

    [24]

    Zhou K, Luo X R, Li Z J, Zhang B 2015 IEEE T. Electron. Dev. 62 3334Google Scholar

    [25]

    Cao Z, Sun Q, Zhang H W, Wang Q, Ma C F, Jiao L C 2022 Micromachines 13 843Google Scholar

    [26]

    Cheng J, Zhang B, Li Z 2008 IEEE Electron Device Lett. 29 645Google Scholar

    [27]

    Chen Y M, Lee C L, Tsai M H, Lee C T, Wang C C 2018 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs Chicago, IL, USA, May 13–17, 2018 pp331–334

    [28]

    Zhang S, Tuan H C, Wu X J, Shi L, Wu J 2016 Microelectron. Reliab. 61 125Google Scholar

    [29]

    Chen W, Pjencak J, Agam M, Janssens J, Jerome R, Menon S, Griswold M 2021 2021 33rd International Symposium on Power Semiconductor Devices and ICs Nagoya, Japan, May 30–June 03, 2021 pp287–290

    [30]

    Qiao M, Liu W, Yuan L, Xu P, Ma C, Lin F, Liu K, Guo Y, Lin Z, Zhang S, Zhang B 2022 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs Vancouver, BC, Canada, May 22–25, 2022 pp149–152

    [31]

    Kong M, Yi B, Chen X 2019 2019 IEEE 13th International Conference on Power Electronics and Drive Systems Toulouse, France, July 09–12, 2019 pp1–4

    [32]

    Fan J, Wang Z G, Zhang B, Luo X R 2013 Chin. Phys. B 22 048501Google Scholar

    [33]

    Honarkhah S, Nassif-Khalil S, Salama C A T 2004 Proceedings of the 30th European Solid-State Circuits Conference Leuven, Belgium, September 23, 2004 pp117–120

    [34]

    Hölke A, Antoniou M, Udrea F 2020 2020 32nd International Symposium on Power Semiconductor Devices and ICs Vienna, Austria, September 13–18, 2020 pp435–438

  • [1] Liu Cheng, Li Ming, Wen Zhang, Gu Zhao-Yuan, Yang Ming-Chao, Liu Wei-Hua, Han Chuan-Yu, Zhang Yong, Geng Li, Hao Yue. Establishment of composite leakage model and design of GaN Schottky barrier diode with stepped field plate. Acta Physica Sinica, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [2] Xu Da-Lin, Wang Yu-Qi, Li Xin-Hua, Shi Tong-Fei. Effect of charge coupling on breakdown voltage of high voltage trench-gate-type super barrier rectifier. Acta Physica Sinica, 2021, 70(6): 067301. doi: 10.7498/aps.70.20201558
    [3] Yang Chu-Ping, Geng Yi-Nan, Wang Jie, Liu Xing-Nan, Shi Zhen-Gang. Breakdown voltage of high pressure helium parallel plates and effect of field emission. Acta Physica Sinica, 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [4] Yuan Song, Duan Bao-Xing, Yuan Xiao-Ning, Ma Jian-Chong, Li Chun-Lai, Cao Zhen, Guo Hai-Jun, Yang Yin-Tang. Experimental research on the new Al0.25Ga0.75N/GaN HEMTs with a step AlGaN layer. Acta Physica Sinica, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [5] Li Chun-Lai, Duan Bao-Xing, Ma Jian-Chong, Yuan Song, Yang Yin-Tang. New super junction lateral double-diffused metal-oxide-semiconductor field-effect transistor with the P covered layer. Acta Physica Sinica, 2015, 64(16): 167304. doi: 10.7498/aps.64.167304
    [6] Yue Shan, Liu Xing-Nan, Shi Zhen-Gang. Experimental study on breakdown voltage between parallel plates in high-pressure helium. Acta Physica Sinica, 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [7] Cao Zhen, Duan Bao-Xing, Yuan Xiao-Ning, Yang Yin-Tang. Complete three-dimensional reduced surface field super junction lateral double-diffused metal-oxide-semiconductor field-effect transistor with semi-insulating poly silicon. Acta Physica Sinica, 2015, 64(18): 187303. doi: 10.7498/aps.64.187303
    [8] Duan Bao-Xing, Li Chun-Lai, Ma Jian-Chong, Yuan Song, Yang Yin-Tang. New folding lateral double-diffused metal-oxide-semiconductor field effect transistor with the step oxide layer. Acta Physica Sinica, 2015, 64(6): 067304. doi: 10.7498/aps.64.067304
    [9] Duan Bao-Xing, Cao Zhen, Yuan Xiao-Ning, Yang Yin-Tang. New REBULF super junction LDMOS with the N type buffered layer. Acta Physica Sinica, 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [10] Duan Bao-Xing, Yang Yin-Tang. Breakdown voltage analysis for the new Al0.25 Ga0.75N/GaN HEMTs with the step AlGaN layers. Acta Physica Sinica, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [11] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong. A low on-resistance silicon on insulator lateral double diffused metal oxide semiconductor device with a vertical drain field plate. Acta Physica Sinica, 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [12] Duan Bao-Xing, Cao Zhen, Yuan Song, Yuan Xiao-Ning, Yang Yin-Tang. New super junction lateral double-diffused MOSFET with electric field modulation by differently doping the buffered layer. Acta Physica Sinica, 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [13] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong, Zhang Wei-Hua, Dai Hong-Li. A dual-trench silicon on insulator high voltage device with an L-shaped source field plate. Acta Physica Sinica, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [14] Wang Xiao-Wei, Luo Xiao-Rong, Yin Chao, Fan Yuan-Hang, Zhou Kun, Fan Ye, Cai Jin-Yong, Luo Yin-Chun, Zhang Bo, Li Zhao-Ji. Mechanism and optimal design of a high-k dielectric conduction enhancement SOI LDMOS. Acta Physica Sinica, 2013, 62(23): 237301. doi: 10.7498/aps.62.237301
    [15] Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen. Breakdown voltage analysis for new Al0.25Ga0.75N/GaN HEMT with F ion implantation. Acta Physica Sinica, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [16] Yang Yin-Tang, Geng Zhen-Hai, Duan Bao-Xing, Jia Hu-Jun, Yu Cen, Ren Li-Li. Characteristics of a SiC SBD with semi-superjunction structure. Acta Physica Sinica, 2010, 59(1): 566-570. doi: 10.7498/aps.59.566
    [17] Li Qi, Zhang Bo, Li Zhao-Ji. A new analytical model of breakdown voltage for the SD LDMOS. Acta Physica Sinica, 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [18] Guo Liang-Liang, Feng Qian, Hao Yue, Yang Yan. Study of high breakdown-voltage AlGaN/GaN FP-HEMT. Acta Physica Sinica, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [19] Li Qi, Li Zhao-Ji, Zhang Bo. Analytical model for the surface electrical field distribution of double RESURF device with surface implanted P-top region. Acta Physica Sinica, 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [20] Zhao Yi, Wan Xing-Gong. Substrate and process dependence of gate oxide reliability of 0.18μm dual gate CMOS process. Acta Physica Sinica, 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
Metrics
  • Abstract views:  353
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  05 November 2024
  • Accepted Date:  17 February 2025
  • Available Online:  21 February 2025
  • Published Online:  20 April 2025

/

返回文章
返回