Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ghost imaging method based on blind noise estimation and iterative filtering denoising

ZHOU Yang YANG Yang ZHAO Jiale CHU Wei XU Yanlei ZHANG Wenying

Citation:

Ghost imaging method based on blind noise estimation and iterative filtering denoising

ZHOU Yang, YANG Yang, ZHAO Jiale, CHU Wei, XU Yanlei, ZHANG Wenying
cstr: 32037.14.aps.74.20250544
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This paper introduces an adaptive blind noise dynamic filtering for ghost imaging reconstruction (ABNDF-GIR), a novel method of optimizing ghost imaging data with a limited number of measurements, significantly improving image quality and peak signal-to-noise ratio (PSNR). To address the challenges of noise and undersampling, we first enhance the stability of the measurement matrix by using pseudoinversion and a unit matrix, and calculate correction terms for bucket detector observations to optimize the reconstruction process. A balanced all-one column vector is used as the initial value to accelerate convergence. For iterative computation, we propose a novel filtering and denoising technique, the adaptive denoising window-based guided filtering with BM3D (ADW-BG), which integrates blind noise estimation, block matching and 3D filtering, and guided filtering. This dynamic filtering method effectively preserves important details during each iteration, and can achieve high-quality target reconstruction even with fewer measurements. Extensive simulations and experimental results verify that our method is significantly superior to traditional filtering methods and various compressiv sensing algorithms, especially in edge preservation and texture detail enhancement. The proposed technique provides a key technical advancement for the application of ghost imaging in fields such as remote sensing and medical imaging, showing significant advantages in real-world imaging scenarios.
      Corresponding author: XU Yanlei, yanleixu@jlau.edu.cn ; ZHANG Wenying, zhangwy@jlenu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of the Ministry of Science and Technology, China (Grant No. 2022YFC2203901) and the Jilin Provincial Department of Science and Technology Free Exploration Basic Research, China (Grant No. YDZJ202301ZYTS408).
    [1]

    Klyshko D N 1988 Zh. Eksp. Teor. Fiz. 94 82

    [2]

    Pittman T B, Shih Y, Strekalov D, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [3]

    Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [4]

    Cao D Z, Xiong J, Wang K 2005 Phys. Rev. A 71 013801Google Scholar

    [5]

    Zhao C, Gong W, Chen M, Li E, Wang H, Xu W, Han S 2012 Appl. Phys. Lett. 101 141123Google Scholar

    [6]

    Deng C, Gong W, Han S 2016 Opt. Express 24 25983Google Scholar

    [7]

    Wang C, Mei X, Pan L, Wang P, Li W, Gao X, Bo Z, Chen M, Gong W, Han S 2018 Remote Sens. 10 732Google Scholar

    [8]

    Huang X, Xu Y, Bai Y, Fu X 2023 Opt. Lett. 48 5543Google Scholar

    [9]

    Zhang L, Wang X, Zhou Q, Xue J, Xu B 2024 Opt. Express 32 4242Google Scholar

    [10]

    Ma J, Li Z, Zhao S, Wang L 2023 Opt. Express 31 11717Google Scholar

    [11]

    Huang W, Tan W, Qin H, Wang J, Huang Z, Huang X, Fu X, Bai Y 2023 J. Opt. Soc. Am. B 40 1696Google Scholar

    [12]

    Wang Y, Wang X, Gao C, Yu Z, Wang H, Zhao H, Yao Z 2024 Sensors 24 4197Google Scholar

    [13]

    Ferri F, Magatti D, Lugiato L, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [14]

    Sun B, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892Google Scholar

    [15]

    Li M, Zhang Y, Luo K, Wu L, Fan H 2013 Phys. Rev. A 87 033813Google Scholar

    [16]

    Zhang J, Zhao D, Li Y, Liu Y, Sun M, Li X, Yu Z, Zhou X 2023 Appl. Opt. 62 7678Google Scholar

    [17]

    白旭, 李永强, 赵生妹 2013 物理学报 62 044209Google Scholar

    Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209Google Scholar

    [18]

    Wang L, Zhao S M 2020 Chin. Phys. B 29 024204Google Scholar

    [19]

    Zhang C, Guo S, Cao J, Guan J, Gao F 2014 Opt. Express 22 30063Google Scholar

    [20]

    Gong W 2015 Photonics Res. 3 234Google Scholar

    [21]

    Yao X, Yu W, Liu X, Li L, Li M, Wu L, Zhai G 2014 Opt. Express 22 24268Google Scholar

    [22]

    Li G, Yang Z, Zhao Y, Yan R, Liu X, Liu B 2017 Laser Phys. Lett. 14 025207Google Scholar

    [23]

    张海鹏, 赵昌哲, 鞠晓璐, 汤杰, 肖体乔 2022 物理学报 71 074201Google Scholar

    Zhang H P, Zhao C Z, Ju X L, Tang J, Xiao T Q 2022 Acta Phys. Sin. 71 074201Google Scholar

    [24]

    Chen L, Wang C, Xiao X, Ren C, Zhang D, Li Z, Cao D 2022 Opt. Express 30 6248Google Scholar

    [25]

    Wu H, Wang C, Gong W 2018 Opt. Express 26 4183Google Scholar

    [26]

    Xu C, Li D, Fan X, Lin B, Guo K, Yin Z, Guo Z 2023 Phys. Scr. 98 065011Google Scholar

    [27]

    Kataoka S, Mizutani Y, Uenohara T, Takaya Y, Matoba O 2022 Appl. Opt. 61 10126Google Scholar

    [28]

    Zhou C, Liu X, Feng Y, Li X, Wang G, Sun H, Huang H, Song L 2022 Opt. Lasers Eng. 156 107101Google Scholar

    [29]

    Fan Y, Bai Y, Fu Q, Zhang R, Zhou L, Zhu X, Zou X, Fu X 2024 Opt. Commun. 566 130684Google Scholar

    [30]

    Katkovnik V, Astola J 2012 J. Opt. Soc. Am. A 29 1556Google Scholar

    [31]

    Zhou C, Feng D, Wang G, Huang J, Huang H, Liu X, Li X, Feng Y, Sun H, Song L 2023 Opt. Express 31 25013Google Scholar

    [32]

    Tomasi C, Manduchi R 1998 Proceedings of the Sixth International Conference on Computer Vision Bombay, India, January 7, 1998 p839

    [33]

    Buades A, Coll B, Morel J M 2005 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition San Diego, CA, USA, June 20–25, 2005 p60

    [34]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Process. 16 2080Google Scholar

    [35]

    He K, Sun J, Tang X 2012 IEEE Trans. Pattern Anal. Mach. Intell. 35 1397

    [36]

    Liu X, Jing X Y, Tang G, Wu F, Ge Q 2017 Signal Process. 135 239Google Scholar

    [37]

    Izadi S, Sutton D, Hamarneh G 2023 Artif. Intell. Rev. 56 5929Google Scholar

    [38]

    Liu X, Tanaka M, Okutomi M 2013 IEEE Trans. Image Process. 22 5226Google Scholar

    [39]

    Lei T, Zhang R, Ma Y, Ding X, Wu Y, Shiyong W 2024 Opt. Commun. 550 130023Google Scholar

    [40]

    李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰 2014 物理学报 63 224201Google Scholar

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201Google Scholar

  • 图 1  基于赝热光源的鬼成像原理示意图. BS表示分束棱镜, PC表示计算机, $ {z}_{1} $表示目标与光源之间的距离, $ {z}_{2} $表示CCD与光源之间的距离

    Figure 1.  Principle of ghost imaging using pseudo-thermal light source. BS represents the beam splitter, PC represents the computer, $ {z}_{1} $ denotes the distance between the target and the light source, $ {z}_{2} $ denotes the distance between the CCD and the light source.

    图 2  ABNDF-GIR方法的示意图. 蓝色部分计算桶探测器观测值的修正项, 黄色部分涵盖了目标重建的迭代计算过程, 绿色部分展示了用于目标重建和噪声抑制的ADW-BG方法, 红色部分为迭代停止准则

    Figure 2.  Schematic diagram of the ABNDF-GIR method. The blue section calculates correction terms for bucket detector observations, the yellow section covers the iterative computation process of compressed sensing ghost imaging, the green section presents the proposed ADW-BG method for target reconstruction and noise reduction, and the red section assesses the iterative stopping condition.

    图 3  含噪图像噪声水平盲估计原理示意图

    Figure 3.  Schematic diagram of blind estimation for noise level in noisy image.

    图 4  不同滤波方法的迭代重建“Airplane”二值图像结果 (a)原始图像; (b)—(f)分别为采用BF, NLF, BM3D, GF和ADW-BG方法在迭代算法中得到的重建图像

    Figure 4.  Iterative reconstruction results of the “Airplane” binary image using different filtering methods: (a) Original image; (b)–(f) the reconstructed images obtained using BF, NLF, BM3D, GF, and ADW-BG methods, respectively, in the iterative algorithm.

    图 5  不同滤波方法下“Dinosaur”灰度图像的迭代重建结果 (a)原始图像; (b)—(f)分别为采用BF, NLF, BM3D, GF和ADW-BG方法重建的图像

    Figure 5.  Iterative reconstruction results of the grayscale target “Dinosaur” using different filtering methods: (a) Original image; (b)–(f) the images reconstructed using the BF, NLF, BM3D, GF, and ADW-BG methods, respectively.

    图 6  不同测量次数N下, 各滤波方法迭代重建结果的PSNR值比较

    Figure 6.  Comparison of PSNR values for reconstruction results using different filtering methods in iterative operations under varying measurement numbers N.

    图 7  使用不同鬼成像目标重建方法的重建结果比较 (a), (a1), (a2)和(a3)分别展示了原始目标: “Double Slit”, “Expression”, “TOP”和“Car”; (b), (b1), (b2)和(b3)展示了使用OMP方法的重建结果; (c), (c1), (c2)和(c3)展示了使用TVAL3方法的重建结果; 图(d), (d1), (d2)和(d3)展示了本文方法的重建结果

    Figure 7.  Comparison of reconstruction results using different ghost imaging target reconstruction methods. Panels (a), (a1), (a2), and (a3) display the original targets: “Double Slit,” “Expression,” “TOP,” and “Car,” respectively. Panels (b), (b1), (b2), and (b3) present the reconstruction results using OMP; panels (c), (c1), (c2), and (c3) showcase the reconstruction results using TVAL3; and panels (d), (d1), (d2), and (d3) demonstrate the reconstruction results of our method.

    图 8  不同重建算法在“Double Slit”图像第64行上的像素值对比曲线. “Original”表示原始目标图像的像素值曲线

    Figure 8.  Comparison curve of pixel values in the 64th row of the “Double-Slit” image for different reconstruction algorithms. “Original” refers to the curve of pixel values for the original target.

    图 9  不同重建方法在不同SNR条件下的PSNR值比较

    Figure 9.  Comparison of PSNR values of different reconstruction methods under various SNR conditions.

    图 10  不同重建方法在不同测量次数下的重建目标可视化比较

    Figure 10.  Visualization comparison of reconstruction targets for different reconstruction methods at varying measurement numbers.

    表 1  不同目标重建中不同滤波方法的PSNR值对比

    Table 1.  PSNR values for different filtering methods in the reconstruction of various targets.

    BF/dB NLF/dB BM3D/dB GF/dB ADW-BG/dB
    “Airplane” 19.23 21.58 22.67 24.15 26.16
    “Dinosaur” 25.69 25.90 25.98 26.42 27.56
    DownLoad: CSV

    表 2  不同方法的重建结果PSNR值

    Table 2.  Reconstruction results in PSNR for different methods.

    OMP/dB TVAL3/dB ABNDF-GIR/dB
    (a) 21.78 15.89 34.12
    (a1) 16.17 17.37 25.41
    (a2) 18.25 17.63 30.95
    (a3) 22.27 24.38 26.94
    DownLoad: CSV
  • [1]

    Klyshko D N 1988 Zh. Eksp. Teor. Fiz. 94 82

    [2]

    Pittman T B, Shih Y, Strekalov D, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [3]

    Cheng J, Han S 2004 Phys. Rev. Lett. 92 093903Google Scholar

    [4]

    Cao D Z, Xiong J, Wang K 2005 Phys. Rev. A 71 013801Google Scholar

    [5]

    Zhao C, Gong W, Chen M, Li E, Wang H, Xu W, Han S 2012 Appl. Phys. Lett. 101 141123Google Scholar

    [6]

    Deng C, Gong W, Han S 2016 Opt. Express 24 25983Google Scholar

    [7]

    Wang C, Mei X, Pan L, Wang P, Li W, Gao X, Bo Z, Chen M, Gong W, Han S 2018 Remote Sens. 10 732Google Scholar

    [8]

    Huang X, Xu Y, Bai Y, Fu X 2023 Opt. Lett. 48 5543Google Scholar

    [9]

    Zhang L, Wang X, Zhou Q, Xue J, Xu B 2024 Opt. Express 32 4242Google Scholar

    [10]

    Ma J, Li Z, Zhao S, Wang L 2023 Opt. Express 31 11717Google Scholar

    [11]

    Huang W, Tan W, Qin H, Wang J, Huang Z, Huang X, Fu X, Bai Y 2023 J. Opt. Soc. Am. B 40 1696Google Scholar

    [12]

    Wang Y, Wang X, Gao C, Yu Z, Wang H, Zhao H, Yao Z 2024 Sensors 24 4197Google Scholar

    [13]

    Ferri F, Magatti D, Lugiato L, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [14]

    Sun B, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892Google Scholar

    [15]

    Li M, Zhang Y, Luo K, Wu L, Fan H 2013 Phys. Rev. A 87 033813Google Scholar

    [16]

    Zhang J, Zhao D, Li Y, Liu Y, Sun M, Li X, Yu Z, Zhou X 2023 Appl. Opt. 62 7678Google Scholar

    [17]

    白旭, 李永强, 赵生妹 2013 物理学报 62 044209Google Scholar

    Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209Google Scholar

    [18]

    Wang L, Zhao S M 2020 Chin. Phys. B 29 024204Google Scholar

    [19]

    Zhang C, Guo S, Cao J, Guan J, Gao F 2014 Opt. Express 22 30063Google Scholar

    [20]

    Gong W 2015 Photonics Res. 3 234Google Scholar

    [21]

    Yao X, Yu W, Liu X, Li L, Li M, Wu L, Zhai G 2014 Opt. Express 22 24268Google Scholar

    [22]

    Li G, Yang Z, Zhao Y, Yan R, Liu X, Liu B 2017 Laser Phys. Lett. 14 025207Google Scholar

    [23]

    张海鹏, 赵昌哲, 鞠晓璐, 汤杰, 肖体乔 2022 物理学报 71 074201Google Scholar

    Zhang H P, Zhao C Z, Ju X L, Tang J, Xiao T Q 2022 Acta Phys. Sin. 71 074201Google Scholar

    [24]

    Chen L, Wang C, Xiao X, Ren C, Zhang D, Li Z, Cao D 2022 Opt. Express 30 6248Google Scholar

    [25]

    Wu H, Wang C, Gong W 2018 Opt. Express 26 4183Google Scholar

    [26]

    Xu C, Li D, Fan X, Lin B, Guo K, Yin Z, Guo Z 2023 Phys. Scr. 98 065011Google Scholar

    [27]

    Kataoka S, Mizutani Y, Uenohara T, Takaya Y, Matoba O 2022 Appl. Opt. 61 10126Google Scholar

    [28]

    Zhou C, Liu X, Feng Y, Li X, Wang G, Sun H, Huang H, Song L 2022 Opt. Lasers Eng. 156 107101Google Scholar

    [29]

    Fan Y, Bai Y, Fu Q, Zhang R, Zhou L, Zhu X, Zou X, Fu X 2024 Opt. Commun. 566 130684Google Scholar

    [30]

    Katkovnik V, Astola J 2012 J. Opt. Soc. Am. A 29 1556Google Scholar

    [31]

    Zhou C, Feng D, Wang G, Huang J, Huang H, Liu X, Li X, Feng Y, Sun H, Song L 2023 Opt. Express 31 25013Google Scholar

    [32]

    Tomasi C, Manduchi R 1998 Proceedings of the Sixth International Conference on Computer Vision Bombay, India, January 7, 1998 p839

    [33]

    Buades A, Coll B, Morel J M 2005 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition San Diego, CA, USA, June 20–25, 2005 p60

    [34]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Process. 16 2080Google Scholar

    [35]

    He K, Sun J, Tang X 2012 IEEE Trans. Pattern Anal. Mach. Intell. 35 1397

    [36]

    Liu X, Jing X Y, Tang G, Wu F, Ge Q 2017 Signal Process. 135 239Google Scholar

    [37]

    Izadi S, Sutton D, Hamarneh G 2023 Artif. Intell. Rev. 56 5929Google Scholar

    [38]

    Liu X, Tanaka M, Okutomi M 2013 IEEE Trans. Image Process. 22 5226Google Scholar

    [39]

    Lei T, Zhang R, Ma Y, Ding X, Wu Y, Shiyong W 2024 Opt. Commun. 550 130023Google Scholar

    [40]

    李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰 2014 物理学报 63 224201Google Scholar

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201Google Scholar

  • [1] LI Min, LUO Yihan, LI Tailin, ZHAO Kaiyuan, TAN Yi, XIE Zongliang. Adaptive gating for low signal-to-noise ratio non-line-of-sight imaging. Acta Physica Sinica, 2025, 74(4): 044202. doi: 10.7498/aps.74.20241535
    [2] ZHAO Yining, CHEN Linshan, KONG Lingxin, WANG Chong, REN Cheng, XU Baolong, CAO Dezhong. Ghost imaging based on two-dimensional permutational encryption. Acta Physica Sinica, 2025, 74(16): 164201. doi: 10.7498/aps.74.20250592
    [3] Qin Wei, An Shu-Yue, Chen Shuai, Gong Rong-Zhou, Wang Xian. A method of measuring complex ermittivity of nonmagnetic materials and selecting its initial value based on iterative inversion. Acta Physica Sinica, 2023, 72(7): 070601. doi: 10.7498/aps.72.20222224
    [4] Chen Xing-Yu, Zhou Xin, Bai Xing, Yu Zhan, Wang Yu-Jie, Li Xin-Jia, Liu Yang, Sun Ming-Ze. Equivalence analysis of Fourier ghost imaging and sinusoidal ghost imaging. Acta Physica Sinica, 2023, 72(14): 144202. doi: 10.7498/aps.72.20222317
    [5] Zhang Hai-Peng, Zhao Chang-Zhe, Ju Xiao-Lu, Tang Jie, Xiao Ti-Qiao. Improving quality of crystal diffraction based X-ray ghost imaging through iterative reconstruction algorithm. Acta Physica Sinica, 2022, 71(7): 074201. doi: 10.7498/aps.71.20211978
    [6] Zhang Rui-Xue, Li Hong-Guo, Li Zong-Guo. Temporal imaging based on first-order field correlation. Acta Physica Sinica, 2019, 68(10): 104202. doi: 10.7498/aps.68.20190184
    [7] Cao Ya-Min, Wu Bao-Jian, Wan Feng, Qiu Kun. Principle and noise performance of optical phase arithmetic devices using four wave mixing. Acta Physica Sinica, 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [8] Zhou Yang,  Zhang Hong-Wei,  Zhong Fei,  Guo Shu-Xu. Iterative denoising of ghost imaging based on adaptive threshold method. Acta Physica Sinica, 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [9] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [10] Jiang Rui, Yang Zhen. An improved centroid localization algorithm based on iterative computation for wireless sensor network. Acta Physica Sinica, 2016, 65(3): 030101. doi: 10.7498/aps.65.030101
    [11] Yin Shi-Bai, Wang Wei-Xing, Wang Yi-Bin, Li Da-Peng, Deng Zhen. Fast Bayesian blind restoration for single defocus image with iterative joint bilateral filters. Acta Physica Sinica, 2016, 65(23): 234202. doi: 10.7498/aps.65.234202
    [12] Li Shao-Dong, Chen Wen-Feng, Yang Jun, Ma Xiao-Yan. A fast two dimensional joint linearized bregman iteration algorithm for super-resolution inverse synthetic aperture radar imaging at low signal-to-noise ratios. Acta Physica Sinica, 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [13] Zhong Ya-Jun, Liu Jiao, Liang Wen-Qiang, Zhao Sheng-Mei. Multiple speckle patterns differential compressive ghost imaging. Acta Physica Sinica, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [14] Cao Wei, Guo Yuan, Sun Ming. Fault estimation for discrete switched system based on iterative learning. Acta Physica Sinica, 2014, 63(18): 180202. doi: 10.7498/aps.63.180202
    [15] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] Fang Sheng, Wu Wen-Chuan, Ying Kui, Guo Hua. A new fast magnetic resonance imaging method based on variabledensity spiral data acquisition and Bregman iterative reconstruction. Acta Physica Sinica, 2013, 62(4): 048702. doi: 10.7498/aps.62.048702
    [17] Cheng Xiao-Fang, Xin Cheng-Yun, Wang Lu-Ping, Zhang Zhong-Zheng. The imaging effect in radiation measurement. Acta Physica Sinica, 2013, 62(12): 120702. doi: 10.7498/aps.62.120702
    [18] Liu Xue-Feng, Yao Xu-Ri, Li Ming-Fei, Yu Wen-Kai, Chen Xi-Hao, Sun Zhi-Bin, Wu Ling-An, Zhai Guang-Jie. The role of intensity fluctuations in thermal ghost imaging. Acta Physica Sinica, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [19] Wang Shi-Yuan, Feng Jiu-Chao. A novel method of estimating parameter and its application to blind separation of chaotic signals. Acta Physica Sinica, 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [20] Xiang Liang-Zhong, Xing Da, Gu Huai-Min, Yang Di-Wu, Yang Si-Hua, Zeng Lü-Ming. Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction technique. Acta Physica Sinica, 2007, 56(7): 3911-3916. doi: 10.7498/aps.56.3911
Metrics
  • Abstract views:  2616
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2025
  • Accepted Date:  20 May 2025
  • Available Online:  18 June 2025
  • Published Online:  20 August 2025
  • /

    返回文章
    返回