Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bio-inspired Organic Small-Molecule Memristor Enabled by Synergistic Electric-Thermal Field Modulation

LI Wen KONG Lingjie CHEN Ye ZHOU Jia SHI Wei YI Mingdong

Citation:

Bio-inspired Organic Small-Molecule Memristor Enabled by Synergistic Electric-Thermal Field Modulation

LI Wen, KONG Lingjie, CHEN Ye, ZHOU Jia, SHI Wei, YI Mingdong
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Memristor-driven neuromorphic computing offers a promising path towards brain-inspired intelligence by emulating the multidimensional plasticity of biological synapses, thereby enabling energy-efficient parallel computation. Nevertheless, the attainment of robust environmental adaptability, particularly in response to fluctuating temperatures, continues to represent a substantial challenge for organic memristors in the context of dynamically modulating synaptic plasticity. In order to address this issue, a bio-inspired cobalt phthalocyanine (CoPc)-based memristor was developed, specifically designed for synergistic electric-thermal field modulation. The device employs the stable planar π-conjugated system of CoPc molecules and exploits dynamic oxygen vacancy (OV) migration at the CoPc/AlOx interface. A comprehensive electrical characterisation was conscucted, incorporating X-ray photoelectron spectroscopy (XPS), in-situ Raman spectroscopy, and temperature-dependent electrical measurements across a wide range (293–473 K). This was supported by physical modelling (SCLC, FNT, Arrhenius) to elucidate the underlying mechanisms. Evidence suggests that the apparatus is capable of effectively replicating essential synaptic plasiticy, encompassing short-term potentiation/depression (STP/STD), paired-pulse facilitation/depression (PPF/PPD), under the regulation of an electric field. The index rose to 151%, indicating a significant increase. Spike-amplitude-dependent plasticity (SADP, 45% weight increase), Spike-timing-dependent plasticity (STDP, ΔW = ± 90%), and learning-forgetting-relearning dynamics were revealed, unveiling cumulative memory effects linked to OV transport. It is crucial to note that the device demonstrates exceptional temperature resilience over the range of 293–473 K, characterised by a linear adaptive shift in its critical voltage (VCritical) from 8.7 V at 293 K to 4.5 V (dVCritical /dT = 0.023 V/K). Physical analysis attributes this adaptive threshold and stable operation to a dual-field synergistic mechanism based on trap-assisted carrier transport, elevated temperature thermally activates carriers, reducing the effective barrier for trap escape and OV migration activation energy (Ea = 0.073–0.312 eV), facilitating conduction via Fowler-Nordheim tunneling (FNT) at lower electric fields. Conversely, lower temperatures necessitate higher electric fields to enhance trap ionization efficiency via the Poole-Frenkel effect, compensating for reduced thermal energy. The exploitation of the linear VCritical-T relationship as a sensitive temperature transduction mechanism was validated through the construction of an intelligent fire warning system. This study incorporated a 6 × 6 CoPc memristor array integrated within household heaters, along with a deep learning model (20 × 16 + 16 × 8 + 8 × 1 fully connected network). The resultant model demonstrated a high abnormal temperature recognition accuracy of 96.54%. This work establishes a novel paradigm for environmentally adaptive neuromorphic devices through molecular/interface design and synergistic multi-field modulation, providing a physical realization of temperature-elastic synaptic operation and demonstrating its practical viability for robust next-generation brain-inspired computing platforms.
  • [1]

    Carlos E, Branquinho R, Martins R, Kiazadeh A, Fortunato E 2020 Adv. Mater. 332004328

    [2]

    Hong X, Loy D J, Dananjaya P A, Tan F, Ng C, Lew W 2018 J. Mater. Sci. 538720

    [3]

    Liao K H, Lei P X, Tu M L, Luo S W, Jiang T, Jie W J, Hao J H 2021 ACS Appl. Mater. Interfaces 1332606

    [4]

    Babacan Y, Kaçar F 2017 AEU - Int. J. Electron. Commun. 7316

    [5]

    Campbell K A, Drake K T, Barney Smith E H 2016 Front. Bioeng. Biotechnol. 497

    [6]

    Daddinounou S, Vatajelu E-I 2024 Front. Neurosci. 181387339

    [7]

    Go S-X, Lim K-G, Lee T-H, Loke D K 2024 Small Sci. 42300139

    [8]

    Li Z Y, Li Z S, Tang W, Yao J P, Dou Z P, Gong J J, Li Y F, Zhang B N, Dong Y X, Xia J, Sun L, Jiang P, Cao X, Yang R, Miao X S, Yang R G 2024 Nat. Commun. 157275

    [9]

    Lu J L, Sun F, Zhou G D, Duan S K, Hu X F 2024 IEEE Sens. J. 242967

    [10]

    Zhang J L, Li X J, Xiao P D, Wei Z M, Hong Q H 2024 IEEE Trans. Circuits Syst. I Regular Papers 713228

    [11]

    Huang Y F, Hopkins R, Janosky D, Chen Y C, Chang Y F, Lee J C 2022 IEEE Trans. Electron Devices 696102

    [12]

    Li J Y, Qian Y Z, Li W, Yu S C, Ke Y X, Qian H W, Lin Y H, Hou C H, Shyue J J, Zhou J, Chen Y, Xu J P, Zhu J T, Yi M D, Huang W 2023 Adv. Mater. 352209728

    [13]

    Naqi M, Yu Y, Cho Y, Kang S, Khine M T, Lee M, Kim S 2024 Mater. Today Nano 27100491

    [14]

    Fan Z Y, Tang Z H, Fang J L, Jiang Y P, Liu Q X, Tang X G, Zhou Y C, Gao J 2024 Nanomaterials 14583

    [15]

    He Y, Farmakidis N, Aggarwal S, Dong B, Lee J S, Wang M, Zhang Y, Parmigiani F, Bhaskaran H 2024 Nano Lett. 2416325

    [16]

    Zhu Y B, Wu C X, Xu Z W, Liu Y, Hu H L, Guo T L, Kim T W, Chai Y, Li F S 2021 Nano Lett. 216087

    [17]

    Haghshenas Gorgabi F, Morant-Miñana M C, Zafarkish H, Abbaszadeh D, Asadi K 2023 J. Mater. Chem. C 111690

    [18]

    Hajtó D, Rák Á, Cserey G 2019 Materials 123573

    [19]

    Li H Z, Gao Q, Gao J, Huang J S, Geng X L, Wang G X, Liang B, Li X H, Wang M, Xiao Z S, Chu P K, Huang A P 2023 ACS Appl. Mater. Interfaces 1546449

    [20]

    Sun Y M, Li B X, Liu M, Zhang Z K 2024 Mater. Today Adv. 23100515

    [21]

    Tian L, Wang Y Y, Shi L P, Zhao R 2020 ACS Appl. Electron. Mater. 23633

    [22]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63187301(in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳2008物理学报63187301]

    [23]

    Baranowski M, Sachser R, Marinković B P, Ivanović S D, Huth M 2022 Nanomaterials 124145

    [24]

    Mayer S F, Mitsioni M, van den Heuvel L, Robin P, Ronceray N, Marcaida M J, Abriata L A, Krapp L F, Anton J S, Soussou S, Jeanneret-Grosjean J, Fulciniti A, Moller A, Vacle S, Feletti L, Brinkerhoff H, Laszlo A H, Gundlach J H, Emmerich T, Dal Peraro M, Radenovic A 2025 BioRxiv 26615172

    [25]

    Rodriguez N, Maldonado D, Romero F J, Alonso F J, Aguilera A M, Godoy A, Jimenez-Molinos F, Ruiz F G, Roldan J B 2019 Materials 123734

    [26]

    Wang S X, Dong X Q, Xiong Y X, Sha J, Cao Y G, Wu Y P, Li W, Yin Y, Wang Y C 2021 Adv. Electron. Mater. 72100014

    [27]

    Xu G H, Zhang M L, Mei T T, Liu W C, Wang L, Xiao K 2024 ACS Nano 1819423

    [28]

    Li J Y, Qian Y Z, Ke Y X, Li W, Huang W, Yi M D 2023 ACS Appl. Electron. Mater. 56813

    [29]

    Zhou J, Li W, Chen Y, Lin Y H, Yi M D, Li J Y, Qian Y Z, Guo Y, Cao K Y, Xie L H, Ling H F, Ren Z J, Xu J P, Zhu J T, Yan S K, Huang W 2020 Adv. Mater. 332006201

    [30]

    Wang Z Y, Wang L Y, Wu Y M, Bian L Y, Nagai M, Jv R, Xie L H, Ling H F, Li Q, Bian H Y, Yi M D, Shi N E, Liu X G, Huang W 2021 Adv. Mater. 332104370

    [31]

    Pasquini C, D’Amario L, Zaharieva I, Dau H 2020 J. Chem. Phys. 15219

    [32]

    Bian L Y, Xie M, Chong H, Zhang Z W, Liu G Y, Han Q S, Ge J Y, Liu Z, Lei Y, Zhang G W, Xie L H 2022 Chin. J. Chem. 402451

    [33]

    Chen J B, Jia S J, Gao L Y, Xu J W, Yang C Y, Guo T T, Zhang P, Chen J T, Wang J, Zhao Y, Zhang X Q, Li Y 2024 Colloids Surf. A 689133673

    [34]

    Kim H, Kim M, Lee A, Park H L, Jang J, Bae J H, Kang I M, Kim E S, Lee S H 2023 Adv. Sci. 102300659

    [35]

    Qian Y Z, Li J Y, Li W, Hou C H, Feng Z Y, Shi W, Yi M 2024 J. Mater. Chem. C 129669

    [36]

    Shakib M A, Gao Z, Lamuta C 2023 ACS Appl. Electron. Mater. 54875

    [37]

    Zeng J M, Chen X H, Liu S Z, Chen Q L, Liu G 2023 Nanomaterials 13803

    [38]

    Shao N, Zhang S B, Shao S Y 2019 Acta Phys. Sin. 68338(in Chinese) [邵楠, 张盛兵, 邵舒渊2019物理学报68338]

    [39]

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73207302(in Chinese) [贡以纯,明建宇,吴思齐,仪明东,解令海,黄维,凌海峰2024物理学报73207302]

    [40]

    Hu W J, Fan Z, Mo L Y, Lin H P, Li M X, Li W J, Ou J, Tao R Q, Tian G, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J-M 2025 ACS Appl. Mater. Interfaces 179595

    [41]

    Ki S, Chen M Z, Liang X G 2023 IEEE Nanotechnol. Mag. 1724

    [42]

    Yun S, Mahata C, Kim M-H, Kim S 2022 Appl. Surf. Sci. 579152164

    [43]

    Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M 2012 IEEE Trans. Neural Netw. Learn. Syst. 23565

    [44]

    Chen Z J, Zhang J D, Wen S C, Li Y, Hong Q H 2021 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 291095

    [45]

    Lee Y P 2017 IEEE Trans. Syst. Man Cybern. Syst. 473386

    [46]

    Li M, Hong Q H, Wang X P 2021 Neural Comput. Appl. 34319

    [47]

    Patel M, Gosai J, Patel P, Roy M, Solanki A 2024 ACS Omega 946841

    [48]

    Bing Z S, Baumann I, Jiang Z Y, Huang K, Cai C X, Knoll A 2019 Front. Neurorobot. 1318

    [49]

    Pedroni B U, Joshi S, Deiss S R, Sheik S, Detorakis G, Paul S, Augustine C, Neftci E O, Cauwenberghs G 2019 Front. Neurosci. 13357

    [50]

    Quintana F M, Perez-Peña F, Galindo P L 2022 Neural Comput. Appl. 3415649

    [51]

    Mikaitis M, Pineda García G, Knight J C, Furber S B 2018 Front. Neurosci. 12105

    [52]

    Wang M L, Wang J S 2015 Acta Phys. Sin. 6410

    [53]

    Wang Z X, Yu N G, Liao Y S 2023 Electronics 123992

    [54]

    Kim S I, Lee Y, Park M H, Go G T, Kim Y H, XU W T, Lee H D, Kim H, Seo D G, Lee W, Lee T W 2019 Adv. Electron. Mater. 51900008

    [55]

    Frenkel J 1938 Phys. Rev. 54647

    [56]

    He D W, Qiao J S, Zhang L L, Wang J Y, Lan T, Qian J, Li Y, Shi Y, Chai Y, Lan W, Ono L K, Qi Y B, Xu J B, Ji W, Wang X R 2017 Sci. Adv. 3 e1701186

    [57]

    Takagi K, Nagase T, Kobayashi T, Naito H 2016 Org. Electron. 3265

    [58]

    Sturman B, Podivilov E, Gorkunov M 2003 Phys. Rev. Lett. 91176602

    [59]

    Xie Y L, Kundu S C, Fan S, Zhang Y P 2024 Sci. China Mater. 673675

    [60]

    Cao L J, Luo Y H, Yao J P, Ge X, Luo M Y, Li J Q, Cheng X M, Yang R, Miao X S 2024 J. Mater. Chem. C 1219555

    [61]

    Guo T, Ge J W, Jiao Y X, Teng Y C, Sun B, Huang W, Asgarimoghaddam H, Musselman K P, Fang Y, Zhou Y N, Wu Y A 2023 Mater. Horiz. 101030

    [62]

    Li J C, Liu Z C, Xia Y H, Liu X, Yang H X, Ma Y X, Wang Y L 2025 Adv. Funct. Mater. 352416635

    [63]

    Ganaie M M, Kumar A, Shringi A K, Sahu S, Saliba M, Kumar M 2024 Adv. Funct. Mater. 342405080

    [64]

    Sun Y M, Liu M, Li B X 2024 Small 202404177

    [65]

    Ouyang G, Wang Y L, Su J, Ren M C, Zhang M H, Cao M H 2025 Nano Energy 137110778

    [66]

    Liu Z H, Cheng P P, Li Y F, Kang R Y, Zhang Z Q, Zuo Z Y, Zhao J 2021 ACS Appl. Mater. Interfaces 1358885

    [67]

    Li Z Y, Li Z S, Tang W, Yao J P, Dou Z P, Gong J J, Li Y F, Zhang B N, Dong Y X, Xia J, Sun L, Jiang P, Cao X, Yang R, Miao X S, Yang R G 2024 Nat. Commun. 157275

    [68]

    Shen D H, Zhou J, Chen Y, Kong L J, Li W, Shi W, Yi M D 2025 J. Phys. D: Appl. Phys. 58245107

  • [1] Wu Chao-Jun, Fang Li-Yi, Yang Ning-Ning. Dynamic analysis and experiment of chaotic circuit of non-homogeneous fractional memristor with bias voltage source. Acta Physica Sinica, doi: 10.7498/aps.73.20231211
    [2] Wang Xuan, Du Jian-Rong, Li Zhi-Jun, Ma Ming-Lin, Li Chun-Lai. Coexisting discharge and synchronization of heterogeneous discrete neural network with crosstalk memristor synapses. Acta Physica Sinica, doi: 10.7498/aps.73.20231972
    [3] Gong Yi-Chun, Ming Jian-Yu, Wu Si-Qi, Yi Ming-Dong, Xie Ling-Hai, Huang Wei, Ling Hai-Feng. Recent progress of low-voltage memristor for neuromorphic computing. Acta Physica Sinica, doi: 10.7498/aps.73.20241022
    [4] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, doi: 10.7498/aps.72.20222013
    [5] Zhang Yu-Qi, Wang Jun-Jie, Lü Zi-Yu, Han Su-Ting. Multimode modulated memristors for in-sensor computing system. Acta Physica Sinica, doi: 10.7498/aps.71.20220226
    [6] Hu Wei, Liao Jian-Bin, Du Yong-Qian. An analytic modeling strategy for memristor cell applicable to large-scale memristive networks. Acta Physica Sinica, doi: 10.7498/aps.70.20210116
    [7] Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang. Research progress of protein-based memristor. Acta Physica Sinica, doi: 10.7498/aps.69.20200617
    [8] Xu Wei, Wang Yu-Qi, Li Yue-Feng, Gao Fei, Zhang Miao-Cheng, Lian Xiao-Juan, Wan Xiang, Xiao Jian, Tong Yi. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning. Acta Physica Sinica, doi: 10.7498/aps.68.20191023
    [9] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Analysis of memristor model with learning-experience behavior. Acta Physica Sinica, doi: 10.7498/aps.68.20190808
    [10] Shao Nan,  Zhang Sheng-Bing,  Shao Shu-Yuan. Mathematical model of memristor with sensory memory. Acta Physica Sinica, doi: 10.7498/aps.68.20181577
    [11] Liu Yi-Chun, Lin Ya, Wang Zhong-Qiang, Xu Hai-Yang. Oxide-based memristive neuromorphic synaptic devices. Acta Physica Sinica, doi: 10.7498/aps.68.20191262
    [12] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, doi: 10.7498/aps.68.20182306
    [13] Wu Jie-Ning, Wang Li-Dan, Duan Shu-Kai. A memristor-based time-delay chaotic systems and pseudo-random sequence generator. Acta Physica Sinica, doi: 10.7498/aps.66.030502
    [14] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Modification of memristor model with synaptic characteristics and mechanism analysis of the model's learning-experience behavior. Acta Physica Sinica, doi: 10.7498/aps.65.128503
    [15] Yuan Ze-Shi, Li Hong-Tao, Zhu Xiao-Hua. A digital-analog hybrid random number generator based on memristor. Acta Physica Sinica, doi: 10.7498/aps.64.240503
    [16] Meng Fan-Yi, Duan Shu-Kai, Wang Li-Dan, Hu Xiao-Fang, Dong Zhe-Kang. An improved WOx memristor model with synapse characteristic analysis. Acta Physica Sinica, doi: 10.7498/aps.64.148501
    [17] Li Zhi-Jun, Zeng Yi-Cheng, Li Zhi-Bin. Memristive chaotic circuit based on modified SC-CNNs. Acta Physica Sinica, doi: 10.7498/aps.63.010502
    [18] Liu Dong-Qing, Cheng Hai-Feng, Zhu Xuan, Wang Nan-Nan, Zhang Chao-Yang. Research progress of memristors and memristive mechanism. Acta Physica Sinica, doi: 10.7498/aps.63.187301
    [19] Xu Bi-Rong. A simplest parallel chaotic system of memristor. Acta Physica Sinica, doi: 10.7498/aps.62.190506
    [20] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, doi: 10.7498/aps.61.217306
Metrics
  • Abstract views:  11
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  08 July 2025
  • /

    返回文章
    返回