-
Memristor-driven neuromorphic computing offers a promising path towards brain-inspired intelligence by emulating the multidimensional plasticity of biological synapses, thereby enabling energy-efficient parallel computation. Nevertheless, the attainment of robust environmental adaptability, particularly in response to fluctuating temperatures, continues to represent a substantial challenge for organic memristors in the context of dynamically modulating synaptic plasticity. In order to address this issue, a bio-inspired cobalt phthalocyanine (CoPc)-based memristor was developed, specifically designed for synergistic electric-thermal field modulation. The device employs the stable planar π-conjugated system of CoPc molecules and exploits dynamic oxygen vacancy (OV) migration at the CoPc/AlOx interface. A comprehensive electrical characterisation was conscucted, incorporating X-ray photoelectron spectroscopy (XPS), in-situ Raman spectroscopy, and temperature-dependent electrical measurements across a wide range (293–473 K). This was supported by physical modelling (SCLC, FNT, Arrhenius) to elucidate the underlying mechanisms. Evidence suggests that the apparatus is capable of effectively replicating essential synaptic plasiticy, encompassing short-term potentiation/depression (STP/STD), paired-pulse facilitation/depression (PPF/PPD), under the regulation of an electric field. The index rose to 151%, indicating a significant increase. Spike-amplitude-dependent plasticity (SADP, 45% weight increase), Spike-timing-dependent plasticity (STDP, ΔW = ± 90%), and learning-forgetting-relearning dynamics were revealed, unveiling cumulative memory effects linked to OV transport. It is crucial to note that the device demonstrates exceptional temperature resilience over the range of 293–473 K, characterised by a linear adaptive shift in its critical voltage (VCritical) from 8.7 V at 293 K to 4.5 V (dVCritical /dT = 0.023 V/K). Physical analysis attributes this adaptive threshold and stable operation to a dual-field synergistic mechanism based on trap-assisted carrier transport, elevated temperature thermally activates carriers, reducing the effective barrier for trap escape and OV migration activation energy (Ea = 0.073–0.312 eV), facilitating conduction via Fowler-Nordheim tunneling (FNT) at lower electric fields. Conversely, lower temperatures necessitate higher electric fields to enhance trap ionization efficiency via the Poole-Frenkel effect, compensating for reduced thermal energy. The exploitation of the linear VCritical-T relationship as a sensitive temperature transduction mechanism was validated through the construction of an intelligent fire warning system. This study incorporated a 6 × 6 CoPc memristor array integrated within household heaters, along with a deep learning model (20 × 16 + 16 × 8 + 8 × 1 fully connected network). The resultant model demonstrated a high abnormal temperature recognition accuracy of 96.54%. This work establishes a novel paradigm for environmentally adaptive neuromorphic devices through molecular/interface design and synergistic multi-field modulation, providing a physical realization of temperature-elastic synaptic operation and demonstrating its practical viability for robust next-generation brain-inspired computing platforms.
-
Keywords:
- memristor /
- dual-field modulation /
- critical voltage /
- dynamic synaptic plasticity
-
[1] Carlos E, Branquinho R, Martins R, Kiazadeh A, Fortunato E 2020 Adv. Mater. 332004328
[2] Hong X, Loy D J, Dananjaya P A, Tan F, Ng C, Lew W 2018 J. Mater. Sci. 538720
[3] Liao K H, Lei P X, Tu M L, Luo S W, Jiang T, Jie W J, Hao J H 2021 ACS Appl. Mater. Interfaces 1332606
[4] Babacan Y, Kaçar F 2017 AEU - Int. J. Electron. Commun. 7316
[5] Campbell K A, Drake K T, Barney Smith E H 2016 Front. Bioeng. Biotechnol. 497
[6] Daddinounou S, Vatajelu E-I 2024 Front. Neurosci. 181387339
[7] Go S-X, Lim K-G, Lee T-H, Loke D K 2024 Small Sci. 42300139
[8] Li Z Y, Li Z S, Tang W, Yao J P, Dou Z P, Gong J J, Li Y F, Zhang B N, Dong Y X, Xia J, Sun L, Jiang P, Cao X, Yang R, Miao X S, Yang R G 2024 Nat. Commun. 157275
[9] Lu J L, Sun F, Zhou G D, Duan S K, Hu X F 2024 IEEE Sens. J. 242967
[10] Zhang J L, Li X J, Xiao P D, Wei Z M, Hong Q H 2024 IEEE Trans. Circuits Syst. I Regular Papers 713228
[11] Huang Y F, Hopkins R, Janosky D, Chen Y C, Chang Y F, Lee J C 2022 IEEE Trans. Electron Devices 696102
[12] Li J Y, Qian Y Z, Li W, Yu S C, Ke Y X, Qian H W, Lin Y H, Hou C H, Shyue J J, Zhou J, Chen Y, Xu J P, Zhu J T, Yi M D, Huang W 2023 Adv. Mater. 352209728
[13] Naqi M, Yu Y, Cho Y, Kang S, Khine M T, Lee M, Kim S 2024 Mater. Today Nano 27100491
[14] Fan Z Y, Tang Z H, Fang J L, Jiang Y P, Liu Q X, Tang X G, Zhou Y C, Gao J 2024 Nanomaterials 14583
[15] He Y, Farmakidis N, Aggarwal S, Dong B, Lee J S, Wang M, Zhang Y, Parmigiani F, Bhaskaran H 2024 Nano Lett. 2416325
[16] Zhu Y B, Wu C X, Xu Z W, Liu Y, Hu H L, Guo T L, Kim T W, Chai Y, Li F S 2021 Nano Lett. 216087
[17] Haghshenas Gorgabi F, Morant-Miñana M C, Zafarkish H, Abbaszadeh D, Asadi K 2023 J. Mater. Chem. C 111690
[18] Hajtó D, Rák Á, Cserey G 2019 Materials 123573
[19] Li H Z, Gao Q, Gao J, Huang J S, Geng X L, Wang G X, Liang B, Li X H, Wang M, Xiao Z S, Chu P K, Huang A P 2023 ACS Appl. Mater. Interfaces 1546449
[20] Sun Y M, Li B X, Liu M, Zhang Z K 2024 Mater. Today Adv. 23100515
[21] Tian L, Wang Y Y, Shi L P, Zhao R 2020 ACS Appl. Electron. Mater. 23633
[22] Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63187301(in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳2008物理学报63187301]
[23] Baranowski M, Sachser R, Marinković B P, Ivanović S D, Huth M 2022 Nanomaterials 124145
[24] Mayer S F, Mitsioni M, van den Heuvel L, Robin P, Ronceray N, Marcaida M J, Abriata L A, Krapp L F, Anton J S, Soussou S, Jeanneret-Grosjean J, Fulciniti A, Moller A, Vacle S, Feletti L, Brinkerhoff H, Laszlo A H, Gundlach J H, Emmerich T, Dal Peraro M, Radenovic A 2025 BioRxiv 26615172
[25] Rodriguez N, Maldonado D, Romero F J, Alonso F J, Aguilera A M, Godoy A, Jimenez-Molinos F, Ruiz F G, Roldan J B 2019 Materials 123734
[26] Wang S X, Dong X Q, Xiong Y X, Sha J, Cao Y G, Wu Y P, Li W, Yin Y, Wang Y C 2021 Adv. Electron. Mater. 72100014
[27] Xu G H, Zhang M L, Mei T T, Liu W C, Wang L, Xiao K 2024 ACS Nano 1819423
[28] Li J Y, Qian Y Z, Ke Y X, Li W, Huang W, Yi M D 2023 ACS Appl. Electron. Mater. 56813
[29] Zhou J, Li W, Chen Y, Lin Y H, Yi M D, Li J Y, Qian Y Z, Guo Y, Cao K Y, Xie L H, Ling H F, Ren Z J, Xu J P, Zhu J T, Yan S K, Huang W 2020 Adv. Mater. 332006201
[30] Wang Z Y, Wang L Y, Wu Y M, Bian L Y, Nagai M, Jv R, Xie L H, Ling H F, Li Q, Bian H Y, Yi M D, Shi N E, Liu X G, Huang W 2021 Adv. Mater. 332104370
[31] Pasquini C, D’Amario L, Zaharieva I, Dau H 2020 J. Chem. Phys. 15219
[32] Bian L Y, Xie M, Chong H, Zhang Z W, Liu G Y, Han Q S, Ge J Y, Liu Z, Lei Y, Zhang G W, Xie L H 2022 Chin. J. Chem. 402451
[33] Chen J B, Jia S J, Gao L Y, Xu J W, Yang C Y, Guo T T, Zhang P, Chen J T, Wang J, Zhao Y, Zhang X Q, Li Y 2024 Colloids Surf. A 689133673
[34] Kim H, Kim M, Lee A, Park H L, Jang J, Bae J H, Kang I M, Kim E S, Lee S H 2023 Adv. Sci. 102300659
[35] Qian Y Z, Li J Y, Li W, Hou C H, Feng Z Y, Shi W, Yi M 2024 J. Mater. Chem. C 129669
[36] Shakib M A, Gao Z, Lamuta C 2023 ACS Appl. Electron. Mater. 54875
[37] Zeng J M, Chen X H, Liu S Z, Chen Q L, Liu G 2023 Nanomaterials 13803
[38] Shao N, Zhang S B, Shao S Y 2019 Acta Phys. Sin. 68338(in Chinese) [邵楠, 张盛兵, 邵舒渊2019物理学报68338]
[39] Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73207302(in Chinese) [贡以纯,明建宇,吴思齐,仪明东,解令海,黄维,凌海峰2024物理学报73207302]
[40] Hu W J, Fan Z, Mo L Y, Lin H P, Li M X, Li W J, Ou J, Tao R Q, Tian G, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J-M 2025 ACS Appl. Mater. Interfaces 179595
[41] Ki S, Chen M Z, Liang X G 2023 IEEE Nanotechnol. Mag. 1724
[42] Yun S, Mahata C, Kim M-H, Kim S 2022 Appl. Surf. Sci. 579152164
[43] Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M 2012 IEEE Trans. Neural Netw. Learn. Syst. 23565
[44] Chen Z J, Zhang J D, Wen S C, Li Y, Hong Q H 2021 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 291095
[45] Lee Y P 2017 IEEE Trans. Syst. Man Cybern. Syst. 473386
[46] Li M, Hong Q H, Wang X P 2021 Neural Comput. Appl. 34319
[47] Patel M, Gosai J, Patel P, Roy M, Solanki A 2024 ACS Omega 946841
[48] Bing Z S, Baumann I, Jiang Z Y, Huang K, Cai C X, Knoll A 2019 Front. Neurorobot. 1318
[49] Pedroni B U, Joshi S, Deiss S R, Sheik S, Detorakis G, Paul S, Augustine C, Neftci E O, Cauwenberghs G 2019 Front. Neurosci. 13357
[50] Quintana F M, Perez-Peña F, Galindo P L 2022 Neural Comput. Appl. 3415649
[51] Mikaitis M, Pineda García G, Knight J C, Furber S B 2018 Front. Neurosci. 12105
[52] Wang M L, Wang J S 2015 Acta Phys. Sin. 6410
[53] Wang Z X, Yu N G, Liao Y S 2023 Electronics 123992
[54] Kim S I, Lee Y, Park M H, Go G T, Kim Y H, XU W T, Lee H D, Kim H, Seo D G, Lee W, Lee T W 2019 Adv. Electron. Mater. 51900008
[55] Frenkel J 1938 Phys. Rev. 54647
[56] He D W, Qiao J S, Zhang L L, Wang J Y, Lan T, Qian J, Li Y, Shi Y, Chai Y, Lan W, Ono L K, Qi Y B, Xu J B, Ji W, Wang X R 2017 Sci. Adv. 3 e1701186
[57] Takagi K, Nagase T, Kobayashi T, Naito H 2016 Org. Electron. 3265
[58] Sturman B, Podivilov E, Gorkunov M 2003 Phys. Rev. Lett. 91176602
[59] Xie Y L, Kundu S C, Fan S, Zhang Y P 2024 Sci. China Mater. 673675
[60] Cao L J, Luo Y H, Yao J P, Ge X, Luo M Y, Li J Q, Cheng X M, Yang R, Miao X S 2024 J. Mater. Chem. C 1219555
[61] Guo T, Ge J W, Jiao Y X, Teng Y C, Sun B, Huang W, Asgarimoghaddam H, Musselman K P, Fang Y, Zhou Y N, Wu Y A 2023 Mater. Horiz. 101030
[62] Li J C, Liu Z C, Xia Y H, Liu X, Yang H X, Ma Y X, Wang Y L 2025 Adv. Funct. Mater. 352416635
[63] Ganaie M M, Kumar A, Shringi A K, Sahu S, Saliba M, Kumar M 2024 Adv. Funct. Mater. 342405080
[64] Sun Y M, Liu M, Li B X 2024 Small 202404177
[65] Ouyang G, Wang Y L, Su J, Ren M C, Zhang M H, Cao M H 2025 Nano Energy 137110778
[66] Liu Z H, Cheng P P, Li Y F, Kang R Y, Zhang Z Q, Zuo Z Y, Zhao J 2021 ACS Appl. Mater. Interfaces 1358885
[67] Li Z Y, Li Z S, Tang W, Yao J P, Dou Z P, Gong J J, Li Y F, Zhang B N, Dong Y X, Xia J, Sun L, Jiang P, Cao X, Yang R, Miao X S, Yang R G 2024 Nat. Commun. 157275
[68] Shen D H, Zhou J, Chen Y, Kong L J, Li W, Shi W, Yi M D 2025 J. Phys. D: Appl. Phys. 58245107
Metrics
- Abstract views: 11
- PDF Downloads: 0
- Cited By: 0