Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication and characterization of pulsed laser deposited high-tunability, low-loss Ba0.6Sr0.4TiO3 thin films

YU Chenxi JIANG Haolin XIAO Zhifeng BAO Xiaoqing WANG Dan DENG Gongxun WANG Aiji

Citation:

Fabrication and characterization of pulsed laser deposited high-tunability, low-loss Ba0.6Sr0.4TiO3 thin films

YU Chenxi, JIANG Haolin, XIAO Zhifeng, BAO Xiaoqing, WANG Dan, DENG Gongxun, WANG Aiji
cstr: 32037.14.aps.74.20250938
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Microwave tunable devices are critical components in phased array antennas and RF front-ends, and essential for the precise controling of frequency, phase and amplitude. Although bulk dielectric ceramic materials are widely used in these devices, they pose challenges for integration. In contrast, dielectric thin films offer significant advantages, including easy integration, low cost, high tuning speed, low power consumption, compact size, and continuous tunability, making them more compatible with modern integrated circuit fabrication processes. Currently, a key prerequisite for designing devices based on dielectric thin films is the use of low-permittivity, low-loss substrates to mitigate their influence on the overall dielectric performance, while enhancing the crystalline quality of the films themselves. However, suitable substrates for epitaxial growth, such as MgO and Si, exhibit a significant lattice mismatch (>5%) with dielectric thin films. This poses a substantial challenge to achieving high-quality epitaxial growth, making it difficult to obtain dielectric thin films with both high tunability and low loss.To address this challenge, pulsed laser deposition (PLD) is used to provide high-energy, non-equilibrium growth conditions. By precisely controlling parameters such as substrate temperature and growth oxygen pressure, a suitable growth window that induce domain matching epitaxy (DME) mechanism can be determined, effectively adapting to mismatched strain, and thus successfully preparing high-performance Ba0.6Sr0.4TiO3 (BSTO) epitaxial thin films on MgO(001) substrates.To investigate the effect of substrate temperature on the properties of the BSTO thin films, a series of films is prepared on MgO(001) substrates at temperatures of 680 ℃, 700 ℃, 730 ℃, 760 ℃ and 780 ℃, while other growth conditions are kept constant. The study reveals that as the substrate temperature increases, the crystallinity, tunability, and figure of merit (FOM) of the films are significantly improved. The film grown at 780 ℃ shows a high tunability value of 67.2%, a quality (Q) factor of 49, and an FOM of 32.93. Compared with previously reported films, the Ba0.6Sr0.4TiO3 thin films prepared in this work demonstrate superior dielectric tunability and lower dielectric loss.To explore the thermal stability of the Ba0.6Sr0.4TiO3 thin film, its performance is characterized using Raman spectroscopy and Capacitance-Voltage measurements in a temperature range from 25 ℃ to 225 ℃. Raman spectra indicate that the lattice vibrational modes of the Ba0.6Sr0.4TiO3 film change with the increase of temperature. When temperature is in a range between 175 ℃ and 225 ℃, the film will completely transform from the tetragonal phase to the Raman-inactive cubic phase. At the same time, the nonlinear “butterfly” characteristic of the C-V curves vanishes due to the disappearance of ferroelectric domains. The dielectric constant and tunability reach their maximum values at approximately 60 ℃, then decrease, whereas the Q-factor reaches its peak at around 205 ℃. The motion of domain walls in films is constrained not only by internal stress fields and defects but also by strong pinning effects at the film-substrate interface and the free surface of the film.This research systematically analyzes the influences of surface morphology, crystal structure, and temperature on the dielectric properties of Ba0.6Sr0.4TiO3 epitaxial thin films. It lays a foundation for elucidating the broadband structure-property relationships of Ba1–xSrxTiO3 thin films and highlights their significant potential applications in tunable microwave devices.
      Corresponding author: WANG Aiji, aijiwang@bnu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA0718700), the National Natural Science Foundation of China (Grant No. 12304117), and the Natural Science Foundation of Beijing, China (Grant No. Z240008).
    [1]

    Emadi F, Nemati A, Hinterstein M, Adabiroozjaei E 2019 Ceram. Int. 45 5503Google Scholar

    [2]

    Borderon C, Ginestar S, Gundel H W, Haskou A, Nadaud K, Renoud R, Sharaiha A 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 67 1733Google Scholar

    [3]

    马华, 娄菁, 王军, 董博文, 冯明德, 李智强, 屈绍波 2019 空军工程大学学报 20 53Google Scholar

    Ma H, Lou J, Wang J, Dong B W, Feng M D, Li Z Q, Qu S B 2019 J. Air Force Eng. Univ. 20 53Google Scholar

    [4]

    Johnson K M 1962 J. Appl. Phys. 33 2826Google Scholar

    [5]

    Dong H T, Jian J, Li H F, Jin D R, Chen J G, Cheng J R 2017 J. Alloys Compd. 725 54Google Scholar

    [6]

    Bayrak T, Ozgit-Akgun C, Goldenberg E 2017 J. Non-Cryst. Solids 475 76Google Scholar

    [7]

    Subramanyam G, Cole M W, Sun N X, Kalkur T S, Sbrockey N M, Tompa G S, Guo X M, Chen C L, Alpay S P, Rossetti G A Jr, Dayal K, Chen L Q, Schlom D G 2013 J. Appl. Phys. 114 191301Google Scholar

    [8]

    Liu H G, Avrutin V, Zhu C Y, Özgür Ü, Yang J, Lu C Z, Morkoç H 2013 J. Appl. Phys. 113 044108Google Scholar

    [9]

    Luo W, Chen X Y, Fan J W, Hu Y X, Zheng Z P, Fu Q W 2016 Ceram. Int. 42 17229Google Scholar

    [10]

    Jiao T J, You C, Tian N, Ma L, Duan Z F, Yan F X, Ren P R, Zhao G Y 2022 Appl. Surf. Sci. 590 153112Google Scholar

    [11]

    Wang J, Zhang T J, Xia H Y, Xiang J H, Li W K, Duo S W 2008 J. Sol-Gel Sci. Technol. 47 102Google Scholar

    [12]

    Wander A, Bush I J, Harrison N M 2003 Phys. Rev. B 68 233405Google Scholar

    [13]

    Misirlioglu I B, Alpay S P, He F, Wells B O 2006 J. Appl. Phys. 99 104103Google Scholar

    [14]

    Peng L S J, Xi X X, Moeckly B H, Alpay S P 2003 Appl. Phys. Lett. 83 4592Google Scholar

    [15]

    Tagantsev A K, Sherman V O, Astafev K F, Venkatesh J, Setter N 2003 J. Electroceram. 11 5Google Scholar

    [16]

    Acikel B 2002 Ph. D. Dissertation (Santa Barbara: University of California

    [17]

    Su H T, Lancaster M J, Huang F, Wellhofer F 2000 Microwave Opt. Technol. Lett. 24 155Google Scholar

    [18]

    Gao L B, Guan Z P, Huang S X, Liang K X, Chen H W, Zhang J H 2019 J. Mater. Sci. : Mater. Electron. 30 12821Google Scholar

    [19]

    Schultheiß J, Kungl H, Koruza J 2019 J. Appl. Phys. 125 174101Google Scholar

    [20]

    Damjanovic D 1998 Rep. Prog. Phys. 61 1267Google Scholar

    [21]

    熊沛雨, 倪壮, 林泽丰, 柏欣博, 刘天想, 张翔宇, 袁洁, 王旭, 石兢, 金魁 2023 物理学报 72 097701Google Scholar

    Xiong P Y, Ni Z, Lin Z F, Bai X B, Liu T X, Zhang X Y, Yuan J, Wang X, Shi J, Jin K 2023 Acta Phys. Sin. 72 097701Google Scholar

    [22]

    沈德坤, 杨淄涵, 郭沛源, 赵梦玲, 葛健, 邓功勋, 王爱记 2024 硅酸盐学报 52 229Google Scholar

    Shen D K, Yang Z H, Guo P Y, Zhao M L, Ge J, Deng G X, Wang A J 2024 J. Chin. Ceram. Soc. 52 229Google Scholar

    [23]

    Kim H S, Kim H G, Kim I D, Kim K B, Lee J C 2005 Appl. Phys. Lett. 87 212903Google Scholar

    [24]

    Zhang J J, Zhai J W, Chou X J, Shao J, Lu X, Yao X 2009 Acta Mater. 57 4491Google Scholar

    [25]

    Chung U, Elissalde C, Maglione M, Estournès C, Pate M, Ganne J P 2008 Appl. Phys. Lett. 92 042902Google Scholar

    [26]

    Zhu X H, Zheng D N, Peng W, Li J, Chen Y F 2006 Mater. Lett. 60 1224Google Scholar

    [27]

    Gou X L, Gervais M, Gervais F, Catherinot A, Champeaux C, Sabary F 2002 Mater. Sci. Semicond. Process. 5 189Google Scholar

    [28]

    Wang S X, Hao J H, Wu Z P, Wang D Y, Zhuo Y, Zhao X Z 2007 Appl. Phys. Lett. 91 252908Google Scholar

    [29]

    Zhi Y N, Liu D A, Qu W J, Luan Z, Liu L R 2007 Appl. Phys. Lett. 90 042904Google Scholar

    [30]

    Feng Z Y, Chen W, Tan O K 2009 Mater. Res. Bull. 44 1709Google Scholar

    [31]

    Qin W F, Zhu J, Xiong J, Tang J L, Feng X 2007 J. Electron. Sci. Technol. China 5 303

    [32]

    秦杨晓, 李卓, 梁文学, 刘娜, 赵鹏 2018 压电与声光 40 95Google Scholar

    Qin Y X, Li Z, Liang W X, Liu N, Zhao P 2018 Piezoelectr. Acoustoopt. 40 95Google Scholar

    [33]

    Xu Q, Zhang X F, Huang Y H, Chen W, Liu H X, Chen M, Kim B H 2009 J. Alloys Compd. 488 448Google Scholar

    [34]

    戚炜恒, 王震, 李翔飞, 禹日成, 王焕华 2022 物理学报 71 178103Google Scholar

    Qi W H, Wang Z, Li X F, Yu R C, Wang H H 2022 Acta Phys. Sin. 71 178103Google Scholar

    [35]

    张奇伟, 翟继卫, 岳振星 2013 物理学报 62 237702Google Scholar

    Zhang Q W, Zhai J W, Yue Z X 2013 Acta Phys. Sin. 62 237702Google Scholar

    [36]

    Zhang Q W, Zhai J W, Kong L B, Yao X 2012 J. Appl. Phys. 112 124112Google Scholar

    [37]

    Verma A, Raghavan S, Stemmer S, Jena D 2015 Appl. Phys. Lett. 107 192908Google Scholar

    [38]

    陈渝, 周华将, 谢少雄, 徐倩, 朱建国, 王清远 2021 力学进展 51 755Google Scholar

    Chen Y, Zhou H J, Xie S X, Xu Q, Zhu J G, Wang Q Y 2021 Adv. Mech. 51 755Google Scholar

    [39]

    Chen J H, Su X, Yuan T, Tang W B, Ding S C, Shi Y, Li F M, Chen K, Yu Y, Zhang H C, Zhu S Y, Yuan G L, Lu J 2025 Adv. Mater. Interfaces 12 2400949Google Scholar

    [40]

    唐秋文, 沈明荣, 方亮 2006 物理学报 55 1346Google Scholar

    Tang Q W, Shen M R, Fang L 2006 Acta Phys. Sin. 55 1346Google Scholar

    [41]

    Zhu X H, Chong N, Chan H L, Choy C, Wong K, Liu Z G, Ming N B 2002 Appl. Phys. Lett. 80 3376Google Scholar

    [42]

    吕笑梅, 黄凤珍, 朱劲松 2020 物理学报 69 127704Google Scholar

    Lü X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704Google Scholar

    [43]

    Alema F, Pokhodnya K 2015 J. Adv. Dielectr. 5 1550030Google Scholar

    [44]

    Sahoo S K, Misra D, Sahoo M, MacDonald C A, Bakhru H, Agrawal D C, Mohapatra Y N, Majumder S B, Katiyar R S 2011 J. Appl. Phys. 109 064108Google Scholar

    [45]

    Zhang J R, Chen C, Xiang S Q, Zhang J C, Qi Q, Huang R, Yu Y, Chen K, Han Z D, Yuan G L, Liu J M, Zhu J S 2022 Mater. Res. Express 9 106303Google Scholar

  • 图 1  不同衬底温度下生长的Ba0.6Sr0.4TiO3薄膜的表面形貌及其表面粗糙度 (a) 680 ℃; (b) 700 ℃; (c) 730 ℃; (d) 760 ℃; (e) 780 ℃; (f) 薄膜的均方根表面粗糙度

    Figure 1.  Surface morphology and surface roughness of Ba0.6Sr0.4TiO3 films grown on wafers of different temperatures: (a) 680 ℃; (b) 700 ℃; (c) 730 ℃; (d) 760 ℃; (e) 780 ℃; (f) RMS of films.

    图 2  不同衬底温度下生长的薄膜晶格结构表征 (a) XRD谱图; (b) (002)取向衍射峰的半高宽; (c) 晶格常数

    Figure 2.  Characterization of the lattice structure of thin films grown at different wafers’ temperatures: (a) XRD patterns; (b) the FWHM of (002) diffraction peak; (c) lattice constant.

    图 3  薄膜电容器 (a) 叉指电极示意图; (b) 本研究制备的叉指电极

    Figure 3.  Thin film capacitor: (a) Interdigital electrodes; (b) photograph of the planar interdigitated capacitor structure.

    图 4  不同衬底温度下生长的Ba0.6Sr0.4TiO3薄膜的介电性能 (a) C-V曲线; (b) 在零场下的相对介电常数; (c) 可调率与Q; (d) 优值因子

    Figure 4.  Dielectric properties of Ba0.6Sr0.4TiO3 films grown at different wafers’ temperatures: (a) C-V curves; (b) dielectric constant (at 0 kV/cm); (c) tunability and Q factor; (d) figures of merit.

    图 5  Ba0.6Sr0.4TiO3薄膜介电性能对比图

    Figure 5.  Comparison figure of dielectric properties of Ba0.6Sr0.4TiO3 films.

    图 6  (a) Ba0.6Sr0.4TiO3的(113)峰倒易空间衍射; (b) Ba0.6Sr0.4TiO3/MgO(001)的HAADF图像

    Figure 6.  (a) Reciprocal space mapping of (113) diffraction peak for Ba0.6Sr0.4TiO3; (b) HAADF imaging of Ba0.6Sr0.4TiO3/MgO(001).

    图 7  Ba0.6Sr0.4TiO3薄膜在不同温度下的Raman散射光谱与C-V曲线

    Figure 7.  Raman scattering spectra and C-V curves of Ba0.6Sr0.4TiO3 thin films at different temperatures.

    图 8  Ba0.6Sr0.4TiO3薄膜在不同测试温度下的介电性能 (a) 零场下的介电常数; (b) $ 1/\varepsilon{\text{-}}T $曲线与居里-外斯定律理论曲线; (c) 可调率; (d) Q

    Figure 8.  Temperature-dependent dielectric properties of Ba0.6Sr0.4TiO3 thin films: (a) Dielectric constant (at 0 kV/cm); (b) $ 1/\varepsilon{\text{-}}T $ and Curie-Weiss law curves; (c) tunability; (d) Q factor.

  • [1]

    Emadi F, Nemati A, Hinterstein M, Adabiroozjaei E 2019 Ceram. Int. 45 5503Google Scholar

    [2]

    Borderon C, Ginestar S, Gundel H W, Haskou A, Nadaud K, Renoud R, Sharaiha A 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 67 1733Google Scholar

    [3]

    马华, 娄菁, 王军, 董博文, 冯明德, 李智强, 屈绍波 2019 空军工程大学学报 20 53Google Scholar

    Ma H, Lou J, Wang J, Dong B W, Feng M D, Li Z Q, Qu S B 2019 J. Air Force Eng. Univ. 20 53Google Scholar

    [4]

    Johnson K M 1962 J. Appl. Phys. 33 2826Google Scholar

    [5]

    Dong H T, Jian J, Li H F, Jin D R, Chen J G, Cheng J R 2017 J. Alloys Compd. 725 54Google Scholar

    [6]

    Bayrak T, Ozgit-Akgun C, Goldenberg E 2017 J. Non-Cryst. Solids 475 76Google Scholar

    [7]

    Subramanyam G, Cole M W, Sun N X, Kalkur T S, Sbrockey N M, Tompa G S, Guo X M, Chen C L, Alpay S P, Rossetti G A Jr, Dayal K, Chen L Q, Schlom D G 2013 J. Appl. Phys. 114 191301Google Scholar

    [8]

    Liu H G, Avrutin V, Zhu C Y, Özgür Ü, Yang J, Lu C Z, Morkoç H 2013 J. Appl. Phys. 113 044108Google Scholar

    [9]

    Luo W, Chen X Y, Fan J W, Hu Y X, Zheng Z P, Fu Q W 2016 Ceram. Int. 42 17229Google Scholar

    [10]

    Jiao T J, You C, Tian N, Ma L, Duan Z F, Yan F X, Ren P R, Zhao G Y 2022 Appl. Surf. Sci. 590 153112Google Scholar

    [11]

    Wang J, Zhang T J, Xia H Y, Xiang J H, Li W K, Duo S W 2008 J. Sol-Gel Sci. Technol. 47 102Google Scholar

    [12]

    Wander A, Bush I J, Harrison N M 2003 Phys. Rev. B 68 233405Google Scholar

    [13]

    Misirlioglu I B, Alpay S P, He F, Wells B O 2006 J. Appl. Phys. 99 104103Google Scholar

    [14]

    Peng L S J, Xi X X, Moeckly B H, Alpay S P 2003 Appl. Phys. Lett. 83 4592Google Scholar

    [15]

    Tagantsev A K, Sherman V O, Astafev K F, Venkatesh J, Setter N 2003 J. Electroceram. 11 5Google Scholar

    [16]

    Acikel B 2002 Ph. D. Dissertation (Santa Barbara: University of California

    [17]

    Su H T, Lancaster M J, Huang F, Wellhofer F 2000 Microwave Opt. Technol. Lett. 24 155Google Scholar

    [18]

    Gao L B, Guan Z P, Huang S X, Liang K X, Chen H W, Zhang J H 2019 J. Mater. Sci. : Mater. Electron. 30 12821Google Scholar

    [19]

    Schultheiß J, Kungl H, Koruza J 2019 J. Appl. Phys. 125 174101Google Scholar

    [20]

    Damjanovic D 1998 Rep. Prog. Phys. 61 1267Google Scholar

    [21]

    熊沛雨, 倪壮, 林泽丰, 柏欣博, 刘天想, 张翔宇, 袁洁, 王旭, 石兢, 金魁 2023 物理学报 72 097701Google Scholar

    Xiong P Y, Ni Z, Lin Z F, Bai X B, Liu T X, Zhang X Y, Yuan J, Wang X, Shi J, Jin K 2023 Acta Phys. Sin. 72 097701Google Scholar

    [22]

    沈德坤, 杨淄涵, 郭沛源, 赵梦玲, 葛健, 邓功勋, 王爱记 2024 硅酸盐学报 52 229Google Scholar

    Shen D K, Yang Z H, Guo P Y, Zhao M L, Ge J, Deng G X, Wang A J 2024 J. Chin. Ceram. Soc. 52 229Google Scholar

    [23]

    Kim H S, Kim H G, Kim I D, Kim K B, Lee J C 2005 Appl. Phys. Lett. 87 212903Google Scholar

    [24]

    Zhang J J, Zhai J W, Chou X J, Shao J, Lu X, Yao X 2009 Acta Mater. 57 4491Google Scholar

    [25]

    Chung U, Elissalde C, Maglione M, Estournès C, Pate M, Ganne J P 2008 Appl. Phys. Lett. 92 042902Google Scholar

    [26]

    Zhu X H, Zheng D N, Peng W, Li J, Chen Y F 2006 Mater. Lett. 60 1224Google Scholar

    [27]

    Gou X L, Gervais M, Gervais F, Catherinot A, Champeaux C, Sabary F 2002 Mater. Sci. Semicond. Process. 5 189Google Scholar

    [28]

    Wang S X, Hao J H, Wu Z P, Wang D Y, Zhuo Y, Zhao X Z 2007 Appl. Phys. Lett. 91 252908Google Scholar

    [29]

    Zhi Y N, Liu D A, Qu W J, Luan Z, Liu L R 2007 Appl. Phys. Lett. 90 042904Google Scholar

    [30]

    Feng Z Y, Chen W, Tan O K 2009 Mater. Res. Bull. 44 1709Google Scholar

    [31]

    Qin W F, Zhu J, Xiong J, Tang J L, Feng X 2007 J. Electron. Sci. Technol. China 5 303

    [32]

    秦杨晓, 李卓, 梁文学, 刘娜, 赵鹏 2018 压电与声光 40 95Google Scholar

    Qin Y X, Li Z, Liang W X, Liu N, Zhao P 2018 Piezoelectr. Acoustoopt. 40 95Google Scholar

    [33]

    Xu Q, Zhang X F, Huang Y H, Chen W, Liu H X, Chen M, Kim B H 2009 J. Alloys Compd. 488 448Google Scholar

    [34]

    戚炜恒, 王震, 李翔飞, 禹日成, 王焕华 2022 物理学报 71 178103Google Scholar

    Qi W H, Wang Z, Li X F, Yu R C, Wang H H 2022 Acta Phys. Sin. 71 178103Google Scholar

    [35]

    张奇伟, 翟继卫, 岳振星 2013 物理学报 62 237702Google Scholar

    Zhang Q W, Zhai J W, Yue Z X 2013 Acta Phys. Sin. 62 237702Google Scholar

    [36]

    Zhang Q W, Zhai J W, Kong L B, Yao X 2012 J. Appl. Phys. 112 124112Google Scholar

    [37]

    Verma A, Raghavan S, Stemmer S, Jena D 2015 Appl. Phys. Lett. 107 192908Google Scholar

    [38]

    陈渝, 周华将, 谢少雄, 徐倩, 朱建国, 王清远 2021 力学进展 51 755Google Scholar

    Chen Y, Zhou H J, Xie S X, Xu Q, Zhu J G, Wang Q Y 2021 Adv. Mech. 51 755Google Scholar

    [39]

    Chen J H, Su X, Yuan T, Tang W B, Ding S C, Shi Y, Li F M, Chen K, Yu Y, Zhang H C, Zhu S Y, Yuan G L, Lu J 2025 Adv. Mater. Interfaces 12 2400949Google Scholar

    [40]

    唐秋文, 沈明荣, 方亮 2006 物理学报 55 1346Google Scholar

    Tang Q W, Shen M R, Fang L 2006 Acta Phys. Sin. 55 1346Google Scholar

    [41]

    Zhu X H, Chong N, Chan H L, Choy C, Wong K, Liu Z G, Ming N B 2002 Appl. Phys. Lett. 80 3376Google Scholar

    [42]

    吕笑梅, 黄凤珍, 朱劲松 2020 物理学报 69 127704Google Scholar

    Lü X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704Google Scholar

    [43]

    Alema F, Pokhodnya K 2015 J. Adv. Dielectr. 5 1550030Google Scholar

    [44]

    Sahoo S K, Misra D, Sahoo M, MacDonald C A, Bakhru H, Agrawal D C, Mohapatra Y N, Majumder S B, Katiyar R S 2011 J. Appl. Phys. 109 064108Google Scholar

    [45]

    Zhang J R, Chen C, Xiang S Q, Zhang J C, Qi Q, Huang R, Yu Y, Chen K, Han Z D, Yuan G L, Liu J M, Zhu J S 2022 Mater. Res. Express 9 106303Google Scholar

  • [1] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [3] Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan. Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [4] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [5] Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [6] Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Physica Sinica, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [7] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [8] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [9] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [10] Zhao Xue-Tong, Liao Rui-Jin, Li Jian-Ying, Wang Fei-Peng. Effect of direct current degradation on dielectric property of CaCu3Ti4O12 ceramic. Acta Physica Sinica, 2015, 64(12): 127701. doi: 10.7498/aps.64.127701
    [11] Zhang Qi-Wei, Zhai Ji-Wei, Yue Zhen-Xing. Raman spectra studies on (Ba,Sr)TiO3 ceramics under dc electric fields. Acta Physica Sinica, 2013, 62(23): 237702. doi: 10.7498/aps.62.237702
    [12] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [13] Yu Jian, Liao Jia-Xuan, Jin Long, Wei Xiong-Bang, Wang Peng, Wei Xu-Bo, Xu Zi-Qiang. Preparation and dielectric properties of BST films with high tunability. Acta Physica Sinica, 2011, 60(7): 077701. doi: 10.7498/aps.60.077701
    [14] Chen Chao, Jiang Xiang-Ping, Wei Wei, Li Xiao-Hong, Wei Hong-Bin, Song Fu-Sheng. Micro-morphology and dielectric properties for (K0.45Na0.55)NbO3 lead-free piezoelectric crystal. Acta Physica Sinica, 2011, 60(10): 107704. doi: 10.7498/aps.60.107704
    [15] Wang Shang-Bao, Dong Ze-Hua, Xu Zhi-Mou, Peng Jing. Metal organic decomposition technique and optical propertiesof amorphous Ba0.7Sr0.3TiO3 thin films. Acta Physica Sinica, 2011, 60(5): 057702. doi: 10.7498/aps.60.057702
    [16] Ding Nan, Tang Xin-Gui, Kuang Shu-Juan, Wu Jun-Bo, Liu Qiu-Xiang, He Qin-Yu. Effect of MnO2 additive on the piezoelectric and dielectric properties of Ba(Zr, Ti)O3 ceramics. Acta Physica Sinica, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [17] Zeng Tao, Dong Xian-Lin, Mao Chao-Liang, Liang Rui-Hong, Yang Hong. Effects of porosity and grain sizes on the dielectric and piezoelectric properties of porous PZT ceramics and their mechanism. Acta Physica Sinica, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [18] Zhang Li-Na, Zhao Su-Chuan, Zheng Liao-Ying, Li Guo-Rong, Yin Qing-Rui. Microstructure, dielectric and piezoelectric properties of mixed-layered Bi7Ti4NbO21 ferroelectric ceramics. Acta Physica Sinica, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [19] Hui Rong, Zhu Jun, Lu Wang-Ping, Mao Xiang-Yu, Qiang Feng, Chen Xiao-Bing. Dielectric study on relaxor-like phase transition of lanthanum doped bismuth layer-structured ferroelectrics. Acta Physica Sinica, 2004, 53(1): 276-281. doi: 10.7498/aps.53.276
    [20] ZHANG LEI, ZHONG WEI-LIE, PENG YI-PING, WANG YU-GUO. A CORRELATION BETWEEN THE FERROELECTRIC PHASE TRANSITION AND THE CELL VOLUME IN BARIUM STRONTIUM TITANATE. Acta Physica Sinica, 2000, 49(7): 1371-1376. doi: 10.7498/aps.49.1371
Metrics
  • Abstract views:  494
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2025
  • Accepted Date:  06 August 2025
  • Available Online:  14 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回