Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Off-axis metasurface holographic imaging positions based on periodic modulation

GUO Wenhao PU Xinxin ZHANG Wei LIANG Haifeng ZHU Yechuan HOU Jinyao SUN Xueping ZHOU Shun LIU Weiguo

Citation:

Off-axis metasurface holographic imaging positions based on periodic modulation

GUO Wenhao, PU Xinxin, ZHANG Wei, LIANG Haifeng, ZHU Yechuan, HOU Jinyao, SUN Xueping, ZHOU Shun, LIU Weiguo
cstr: 32037.14.aps.74.20251068
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Metasurface holography based on planar optical devices has attracted considerable attention due to its potential for miniaturizing optical components and systems. However, traditional on-axis holography has inherent zeroth-order diffraction and twin-image effects, which significantly degrade image quality and limit its practical applications. Off-axis metasurface holography, in contrast, provides a promising solution to overcoming these limitations. In this work, we design a metasurface hologram composed of titanium dioxide (TiO2) nanopillars on a silicon dioxide (SiO2) substrate, by using the high refractive index and low optical loss of TiO2 in the visible light range to achieve efficient phase control. The unit cell height is set to 600 nm to ensure sufficient phase accumulation, and the working wavelength is 635 nm. The hologram is constructed by mapping the continuous 0–2π phase distribution obtained from computational holography onto the unit cell array, and changing the nanopillar diameter to achieve full phase coverage. We systematically investigate the effect of the unit cell period on the imaging position in off-axis holography. Numerical simulations show that as the period increases from 280 nm to 350 nm, the center of the holographic image gradually shifts toward the center of the image plane. The optimal period is found to be 324 nm, at which the image is reconstructed precisely at the designed position. Further simulations using different off-axis angles (0°–45°) and nanopillar heights (600–2000 nm) confirm that the imaging position remains fixed at the target location, indicating that it is mainly determined by the unit cell period rather than other structural parameters. These results demonstrate that by carefully selecting the unit cell period, the holographic image can be accurately reconstructed at a predetermined positions with high image quality, providing theoretical guidance for designing high-precision off-axis metasurface holographic imaging systems.
      Corresponding author: ZHANG Wei, zhangwei0105@sztu.edu.cn ; ZHU Yechuan, zyc_xatu@126.com ; LIU Weiguo, wgliu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52075410), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2025CY-YBXM-085), the Natural Science Basic Research Program of Shaanxi, China (Grant No. 2025JC-JCQN-093), the Innovation Capability Support Program of Shaanxi, China (Grant No. 2025ZY1-GNYZ-05), and the Science and Technology Program of Shenzhen, China (Grant No. JCYJ20220530153013030).
    [1]

    Thureja P, Shirmanesh G K, Fountaine K T, Sokhoyan R, Grajower M, Atwater H A 2020 ACS Nano 14 15042Google Scholar

    [2]

    Su D E, Wang X W, Shang G Y, Ding X M, Burokur S N, Liu J, Li H Y 2022 J. Phys. D: Appl. Phys. 23 5102Google Scholar

    [3]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [4]

    Wang Z H, Zhu Y C, Zhou S, Guo W H, Liu Y, He C, Bai M Y, Liu W G 2024 Infrared Phys. Techn. 142 105521Google Scholar

    [5]

    Yuan Y Y, Sun S, Chen Y, Zhang K, Ding X M, Ratni B, Wu Q, Burokur S N, Qiu C W 2020 Adv. Sci. 7 2001437Google Scholar

    [6]

    Yue Z, Li J T, Zheng C L, Li J, Chen M Y, Hao X R, Xu H, Wang Q, Zhang Y T, Yao J Q 2022 Chin. Opt. Lett. 20 043601Google Scholar

    [7]

    Yuan Y Y, Zhang K, Ratni B, Song Q H, Ding X M, Wu Q, Burokur S N, Genevet P 2020 Nat. Commun. 11 4186Google Scholar

    [8]

    徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东 2021 物理学报 70 084201Google Scholar

    Xu P, Xiao Y F, Huang H X, Yang T, Zhang X L, Yuan X, Li X C, Wang M Y, Xu H D 2021 Acta Phys. Sin. 70 084201Google Scholar

    [9]

    Ren H R, Fang X Y, Jang J, Bürger J, Rho J, Maier S A 2020 Nat. Nanotechnol. 15 948Google Scholar

    [10]

    Ni X J, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [11]

    Ji R N, Zheng X R, Li Y L, Xie X, Lin F C, Liu C, Zheng Y W, Yu P Q, Li X R, Song K, Li Z F, Lu W, Zhang S, Wang S W, Wang D, Wang Q H 2025 Laser Photonics Rev. 19 e00398Google Scholar

    [12]

    Pu X X, Sun X P, Ge S B, Cheng J, Zhou S, Liu W G 2022 Micromachines-Basel. 13 1956Google Scholar

    [13]

    Wang Q, Zhang X Q, Xu Y H, Gu J Q, Li Y F, Tian Z, Singh R , Zhang S , Han J G, Zhang W L 2016 Sci. Rep 6 32867Google Scholar

    [14]

    Liu K F, Chen Q M, Liu Y L, Song S C, Zhang H M, Shi L T, He M Y, Xiao S Q, Xiao S M, Zhang X H 2024 Appl. Phys. Lett. 125 041703Google Scholar

    [15]

    Zhao W Y, Liu B Y, Jiang H, Song J, Pei Y B, Jiang Y Y 2016 Opt. Lett. 41 147Google Scholar

    [16]

    Li X, Chen L W, Li Y, Zhang X H, Pu M B, Zhao Z Y 2016 Sci. Adv. 2 e1600892Google Scholar

    [17]

    Li X, Chen L W, Li Y, Zhang X H, Pu M B, Zhao Z Y, Ma X I, Wang Y Q, Hong M H, Luo X A 2016 Sci. Adv. 2 e1601102Google Scholar

    [18]

    Malek S C, Ee H S, Agarwal R 2016 Nano Lett. 16 5053Google Scholar

    [19]

    Li Z, Kim I, Zhang L, Mehmood M Q, Anwar M S, Saleem M, Lee D, Nam K T, Zhang S, Luk’yanchuk B S, Wang Y, Zheng G X, Rho J, Qiu C W 2017 ACS Nano 11 9382Google Scholar

    [20]

    Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [21]

    Gao F, Zhou X, Lu L T, Deng J, Yan B 2023 Results Phys. 52 106925Google Scholar

    [22]

    Bao Y J, Yu Y, Xu H F, Guo C, Li J T, Sun S, Zhou Z K, Qiu C W, Wang X H 2019 Light Sci. Appl. 8 95Google Scholar

    [23]

    Noh J, Kim J, Rho J 2024 Nano Lett. 25 11398Google Scholar

    [24]

    Gopakumar M, Lee G Y, Choi S, Chao B, Peng Y F, Kim J, Wetzstein G 2024 Nature 629 791Google Scholar

    [25]

    Guo W H, Pu X X, Zhu Y C, Wang Z H, Sun X P, Liu Y, Zhou S, Ge S B, Hang L Y, Liu W G 2025 Opt. Commun. 535 130015Google Scholar

  • 图 1  超表面全息图示意图 (a) 基于超表面的全息成像示意图; (b) 单个周期内的单元结构示意图

    Figure 1.  Schematic diagram of metasurface hologram: (a) Schematic diagram of metasurface-based holographic imaging; (b) the unit cell diagram in one period.

    图 2  不同周期单元结构的相位调制和透射率随直径的变化 (a) 相位调制; (b) 透射率

    Figure 2.  Variation of phase shift and transmission with diameter for the unit cell with various period: (a) Phase shift; (b) transmission.

    图 3  离轴全息图模拟 (a) 目标图案; (b) 相位全息图; (c) 计算机生成的全息像

    Figure 3.  Simulation of off-axis hologram: (a) Target pattern; (b) phase-only hologram; (c) computer-generated hologram imaging.

    图 4  (a)—(h) 单元结构周期分别为280, 290, 300, 310, 320, 330, 340, 350 nm时的全息图数值模拟结果; (i) 不同周期对应的全息图像中心坐标; (j) 全息像中心坐标xy与单元结构周期变化关系拟合曲线

    Figure 4.  (a)—(h) Numerical simulation results of holography images with the unit cell periods of 280, 290, 300, 310, 320, 330, 340, and 350 nm; (i) centre coordinates of holographic images corresponding to different periods; (j) fitted curves of the dependence of the holographic image center coordinates x and y on the unit cell period.

    图 5  (a)—(j) 单元结构周期分别为310, 312, 314, 316, 318, 320, 322, 324, 326, 328 nm时的全息图数值模拟结果; (k) 全息像中心坐标xy与单元结构周期变化关系拟合曲线

    Figure 5.  (a)—(j) Numerical simulation results of holography images with the unit cell periods of 310, 312, 314, 316, 318, 320, 322, 324, 326 and 328 nm; (k) fitted curves of the dependence of the holographic image center coordinates x and y on the unit cell period.

    图 6  不同周期下成像性能 (a) 理想情况下成像效果; (b) PSNR; (c) SSIM

    Figure 6.  Imaging performance under different periods: (a) Ideal imaging result; (b) PSNR; (c) SSIM.

    图 7  数值模拟单元结构周期P分别为310, 316, 324, 330 nm时的电场强度分布 (a)—(d) 纳米柱直径D = 100 nm; (e)—(h) 纳米柱满足2π相位时最大直径

    Figure 7.  Electric field intensity distributions from numerical simulations for unit cell periods P = 310, 316, 324, and 330 nm: (a)–(d) The nanopillar diameter D = 100 nm; (e)–(h) the maximum nanopillar diameter at 2π phase.

    图 8  (a)—(j)单元结构周期P为324 nm时, 离轴角分别为0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°和45°时的数值模拟结果

    Figure 8.  (a)–(j) Numerical simulation results of holograms generated by the off-axis angle of 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40° and 45°.

    图 9  不同高度单元结构的相位调制和透射率随直径的变化 (a)相位调制; (b)透射率

    Figure 9.  Variation of phase shift and transmission with diameter for the unit cell with various height: (a) Phase shift; (b) transmission.

    图 10  (a)—(j) 单元结构高度分别为600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000 nm时的全息图数值模拟结果

    Figure 10.  (a)–(j) Numerical simulation results of holograms with the unit structure height of 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, and 2000 nm.

  • [1]

    Thureja P, Shirmanesh G K, Fountaine K T, Sokhoyan R, Grajower M, Atwater H A 2020 ACS Nano 14 15042Google Scholar

    [2]

    Su D E, Wang X W, Shang G Y, Ding X M, Burokur S N, Liu J, Li H Y 2022 J. Phys. D: Appl. Phys. 23 5102Google Scholar

    [3]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [4]

    Wang Z H, Zhu Y C, Zhou S, Guo W H, Liu Y, He C, Bai M Y, Liu W G 2024 Infrared Phys. Techn. 142 105521Google Scholar

    [5]

    Yuan Y Y, Sun S, Chen Y, Zhang K, Ding X M, Ratni B, Wu Q, Burokur S N, Qiu C W 2020 Adv. Sci. 7 2001437Google Scholar

    [6]

    Yue Z, Li J T, Zheng C L, Li J, Chen M Y, Hao X R, Xu H, Wang Q, Zhang Y T, Yao J Q 2022 Chin. Opt. Lett. 20 043601Google Scholar

    [7]

    Yuan Y Y, Zhang K, Ratni B, Song Q H, Ding X M, Wu Q, Burokur S N, Genevet P 2020 Nat. Commun. 11 4186Google Scholar

    [8]

    徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东 2021 物理学报 70 084201Google Scholar

    Xu P, Xiao Y F, Huang H X, Yang T, Zhang X L, Yuan X, Li X C, Wang M Y, Xu H D 2021 Acta Phys. Sin. 70 084201Google Scholar

    [9]

    Ren H R, Fang X Y, Jang J, Bürger J, Rho J, Maier S A 2020 Nat. Nanotechnol. 15 948Google Scholar

    [10]

    Ni X J, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [11]

    Ji R N, Zheng X R, Li Y L, Xie X, Lin F C, Liu C, Zheng Y W, Yu P Q, Li X R, Song K, Li Z F, Lu W, Zhang S, Wang S W, Wang D, Wang Q H 2025 Laser Photonics Rev. 19 e00398Google Scholar

    [12]

    Pu X X, Sun X P, Ge S B, Cheng J, Zhou S, Liu W G 2022 Micromachines-Basel. 13 1956Google Scholar

    [13]

    Wang Q, Zhang X Q, Xu Y H, Gu J Q, Li Y F, Tian Z, Singh R , Zhang S , Han J G, Zhang W L 2016 Sci. Rep 6 32867Google Scholar

    [14]

    Liu K F, Chen Q M, Liu Y L, Song S C, Zhang H M, Shi L T, He M Y, Xiao S Q, Xiao S M, Zhang X H 2024 Appl. Phys. Lett. 125 041703Google Scholar

    [15]

    Zhao W Y, Liu B Y, Jiang H, Song J, Pei Y B, Jiang Y Y 2016 Opt. Lett. 41 147Google Scholar

    [16]

    Li X, Chen L W, Li Y, Zhang X H, Pu M B, Zhao Z Y 2016 Sci. Adv. 2 e1600892Google Scholar

    [17]

    Li X, Chen L W, Li Y, Zhang X H, Pu M B, Zhao Z Y, Ma X I, Wang Y Q, Hong M H, Luo X A 2016 Sci. Adv. 2 e1601102Google Scholar

    [18]

    Malek S C, Ee H S, Agarwal R 2016 Nano Lett. 16 5053Google Scholar

    [19]

    Li Z, Kim I, Zhang L, Mehmood M Q, Anwar M S, Saleem M, Lee D, Nam K T, Zhang S, Luk’yanchuk B S, Wang Y, Zheng G X, Rho J, Qiu C W 2017 ACS Nano 11 9382Google Scholar

    [20]

    Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [21]

    Gao F, Zhou X, Lu L T, Deng J, Yan B 2023 Results Phys. 52 106925Google Scholar

    [22]

    Bao Y J, Yu Y, Xu H F, Guo C, Li J T, Sun S, Zhou Z K, Qiu C W, Wang X H 2019 Light Sci. Appl. 8 95Google Scholar

    [23]

    Noh J, Kim J, Rho J 2024 Nano Lett. 25 11398Google Scholar

    [24]

    Gopakumar M, Lee G Y, Choi S, Chao B, Peng Y F, Kim J, Wetzstein G 2024 Nature 629 791Google Scholar

    [25]

    Guo W H, Pu X X, Zhu Y C, Wang Z H, Sun X P, Liu Y, Zhou S, Ge S B, Hang L Y, Liu W G 2025 Opt. Commun. 535 130015Google Scholar

  • [1] LI Yuxi, ZHANG Huiyun, CHEN Jiongxu, WANG Jiacheng, ZHANG Min, JIANG Qingyou, LIU Meng, ZHANG Yuping. Terahertz metasurface independently controlled by spatial vortex and spatiotemporal optical vortex. Acta Physica Sinica, 2026, 75(1): 0104-1. doi: 10.7498/aps.74.20251078
    [2] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [3] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [4] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [5] Shi Peng-Fei, Ma Xin-Ying, Xiang Chuan, Zhao Hong-Ge, Li Yuan, Gao Ren-Jing, Liu Shu-Tian. Topology optimization design of dual-channel metasurface structure with controllable amplitude of retroreflection and mirror reflection. Acta Physica Sinica, 2023, 72(24): 247801. doi: 10.7498/aps.72.20230775
    [6] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [7] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [8] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [9] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [10] Ding Ji-Fei, Liu Wen-Bing, Li Han-Hui, Luo Yi, Xie Chen-Kai, Huang Li-Rong. Design and fabrication of off-axis meta-lens with large focal depth. Acta Physica Sinica, 2021, 70(19): 197802. doi: 10.7498/aps.70.20202235
    [11] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [12] Xu Ping, Xiao Yu-Fei, Huang Hai-Xuan, Yang Tuo, Zhang Xu-Lin, Yuan Xia, Li Xiong-Chao, Wang Meng-Yu, Xu Hai-Dong. A new method of implementing simultaneous multiplexing holographic display of wavelength and polarization state with simple structure metasurface. Acta Physica Sinica, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [13] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [14] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [15] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [16] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] Wu Chen-Jun, Cheng Yong-Zhi, Wang Wen-Ying, He Bo, Gong Rong-Zhou. Design and radar cross section reduction experimental verification of phase gradient meta-surface based on cruciform structure. Acta Physica Sinica, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [20] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
Metrics
  • Abstract views:  465
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2025
  • Accepted Date:  24 September 2025
  • Available Online:  01 November 2025
  • Published Online:  20 December 2025
  • /

    返回文章
    返回