Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

State-resolved electron capture in low-energy Ar2+-Ar/N2 collisions

CUI Shucheng XING Dadi ZHU Xiaolong ZHAO Dongmei GUO Dalong GAO Yong ZHANG Shaofeng DONG Chenzhong MA Xinwen

Citation:

State-resolved electron capture in low-energy Ar2+-Ar/N2 collisions

CUI Shucheng, XING Dadi, ZHU Xiaolong, ZHAO Dongmei, GUO Dalong, GAO Yong, ZHANG Shaofeng, DONG Chenzhong, MA Xinwen
cstr: 32037.14.aps.74.20251146
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • As a fundamental process in atomic physics, charge exchange relies on quantum state-resolved data that is crucial for various fields such as astrophysics and plasma physics. However, there remains a gap in the research on multi-electron target systems. This study aims to investigate the dynamic mechanisms of single/double electron capture in collisions between Ar2+ ions and Ar atoms or N2 molecules at an energy of 40 keV, thereby supplementing high-precision experimental data in this field. The experiment is conducted on the electron beam ion source (EBIS) platform at the Institute of Modern Physics, Chinese Academy of Sciences, using the cold target recoil ion momentum spectroscopy (COLTRIMS) technique. An ion beam containing ground-state Ar2+ (3s23p4 3P) and metastable Ar2+ (3s23p4 1D, 1S) is used as the projectile, colliding with a supersonic Ar/N2 mixed gas target. Three-dimensional momentum of recoil ions is reconstructed through coincidence measurements of recoil ions and scattered ions, and the Q-value and scattering angle distribution are calculated. Theoretical comparisons are performed using the molecular Coulombic over barrier model (MCBM).The results show that there are similarities in the populations of single-electron captured states between the two systems, but the contribution ratios are different: the Q-value spectrum of the Ar2+-Ar system contains an additional characteristic peak, which corresponds to the process where the projectile ion captures an electron from the 3s orbital of the target while its own 3s electron is excited to the 3p orbital. In contrast, this characteristic peak is absent in the Ar2+-N2 system due to the easy dissociation of excited $ \text{N}_{2}^{+} $ ions. For double-electron capture, both systems are dominated by capturing electrons to the ground state, but only the Ar2+-N2 system shows a significant contribution from excited state populations. The comparison of scattering angles reveals that the higher the capture state of the product ion, the larger the corresponding scattering angle is and the smaller the impact parameter is. This is presumably because electron interactions become more complex at smaller impact parameters, leading to a higher probability of capturing electrons to high-energy levels. In the double-electron capture of the Ar2+-N2 system, only the ground-state channel is populated at small angles (0–1.2 mrad). Additionally, electron capture exhibits dependence on impact parameter: as the angle increases (i.e. the impact parameter decreases), the Q-value of the capture reaction decreases, indicating that the reaction tends to be more endothermic.
      Corresponding author: ZHU Xiaolong, zhuxiaolong@impcas.ac.cn ; DONG Chenzhong, dongcz@nwnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500) and the Natural Science Foundation of Gansu Province, China (Grant No. 25JRRA461).
    [1]

    Cravens T 1997 Geophys. Res. Lett. 24 105Google Scholar

    [2]

    Isler R 1994 Plasma Phys. Control. Fusion 36 171Google Scholar

    [3]

    Team D 2010 Plasma Sci. Technol. 12 11Google Scholar

    [4]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trümper J, West R G 1996 Science 274 205Google Scholar

    [5]

    Wei B R, Zhang R T 2025 Sci. Sin. Phys. Mech. Astron. 55 250008Google Scholar

    [6]

    Cao T, Meng T, Gao Y, Zhang S F, Zhang R T, Yan S, Zhu X L, Wang J, Ma P, Ren B, Xia Z H, Guo D L, Zhang C J, Lin K Z, Xu S, Wei B, Ma X 2023 Astrophys. J. Suppl. Ser. 266 20Google Scholar

    [7]

    Lin K Z, Gao Y, Zhu X L, Zhang S F, Cao T, Guo D L, Shan X, Zhao D M, Chen X J, Ma X 2024 Phys. Rev. A 109 052811Google Scholar

    [8]

    Zhu X B, Xing D D, Lin K Z, Cui S C, Zhu X L, Gao Y, Guo D L, Zhao D M, Zhang S F, Ma X 2024 J. Phys. B: At. Mol. Opt. Phys. 57 045001Google Scholar

    [9]

    Guo D L, Gao J W, Zhang S F, Zhu X L, Gao Y, Zhao D M, Zhang R T, Wu Y, Wang J G, Dubois A, Ma X 2021 Phys. Rev. A 103 032827Google Scholar

    [10]

    Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Gu L, Liang G Y, Guo D L, Gao Y, Zhao D M, Zhang S F, Su M G, Ma X 2021 Astrophys. J. Suppl. Ser. 253 13Google Scholar

    [11]

    Zhu X L, Zhang S F, Gao Y, Guo D L, Xu J W, Zhang R T, Zhao D M, Lin K Z, Zhu X B, Xing D D, Cui S C, Passalidis S, Dubois A, Ma X 2024 Phys. Rev. Lett. 133 173002Google Scholar

    [12]

    Suk H, Guilbaud A, Hird B 1977 Can. J. Phys. 55 1594Google Scholar

    [13]

    Rapp D, Francis W E 1962 J. Chem. Phys. 37 2631Google Scholar

    [14]

    Huber B 1980 J. Phys. B: At. Mol. Phys. 13 809Google Scholar

    [15]

    Shields G C, Moran T 1983 J. Phys. B: At. Mol. Phys. 16 3591Google Scholar

    [16]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156Google Scholar

    [17]

    Meng T, Wu Y, Yin H, Tan X, Ren B, Ma P, Tu B, Yao K, Xiao J, Zou Y, Wei B 2025 Astrophys. J. Suppl. Ser. 279 45Google Scholar

    [18]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [19]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [20]

    Ryufuku H, Sasaki K, Watanabe T 1980 Phys. Rev. A 21 745Google Scholar

    [21]

    Niehaus A 1986 J. Phys. B: At. Mol. Phys. 19 2925Google Scholar

    [22]

    Cornelius K, Wojtkowski K, Olson R E 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2017Google Scholar

    [23]

    Otranto S, Olson R E, Beiersdorfer P 2006 Phys. Rev. A 73 022723Google Scholar

    [24]

    Kallman T, Palmeri P 2007 Rev. Mod. Phys. 79 79Google Scholar

    [25]

    Andersson L, Danared H, Barany A 1987 Nucl. Instrum. Methods Phys. Res. B 23 54Google Scholar

    [26]

    Zygelman B, Cooper D, Ford M, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 3846Google Scholar

    [27]

    Stevens J, Peterson R, Pollack E 1983 Phys. Rev. A 27 2396Google Scholar

    [28]

    Kamber E Y, Mathur D, Hasted J B 1982 J. Phys. B: At. Mol. Phys. 15 2051Google Scholar

    [29]

    Kamber E Y, Jonathan P, Brenton A G, Beynon J H 1987 J. Phys. B: At. Mol. Phys. 20 4129Google Scholar

    [30]

    Smith D, Grief D, Adams N 1979 Int. J. Mass Spectrom. Ion Phys. 30 271Google Scholar

    [31]

    Hird B, Ali S 1981 J. Phys. B: At. Mol. Phys. 14 267Google Scholar

    [32]

    Zhu X L, Cui S C, Xing D D, Xu J W, Najjari B, Zhao D M, Guo D L, Gao Y, Zhang R T, Su M G, Zhang S F, Ma X W 2024 Chin. Phys. B 33 023401Google Scholar

    [33]

    Cui S C, Xing D D, Zhu X L, Su M G, Gao Y, Guo D L, Zhao D M, Zhang S F, Fu Y B, Ma X W 2024 Chin. Phys. B 33 073401Google Scholar

    [34]

    Li Z X, Lin K Z, Zhu X L, Li Z L, Yuan H, Gao Y, Guo D L, Zhao D M, Zhang S F, Ma X W 2025 Chin. Phys. B 34 053401Google Scholar

    [35]

    Xing D D, Cui S C, Wang X X, Zhang D H, Zhu X B, Lin K Z, Gao Y, Guo D L, Zhao D M, Zhang S F, Zhu X L, Ma X 2025 Phys. Rev. A 112 012812Google Scholar

    [36]

    Zhu X L, Ma X, Li J Y, Schmidt M, Feng W T, Peng H, Xu J W, Zschornack G, Liu H P, Zhang T M, Zhao D M, Guo D L, Huang Z K, Zhou X M, Gao Y, Cheng R, Wang H B, Yang J, Kang L 2019 Nucl. Instrum. Methods Phys. Res. B 460 224Google Scholar

    [37]

    Ma X, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [38]

    Kramida A, Yu Ralchenko, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (Ver. 5.12) https://physics.nist.gov/asd [2025-9-8]

    [39]

    Kamber E Y, Quintana E J, Pollack E 1993 J. Phys. B: At. Mol. Opt. Phys. 26 113Google Scholar

    [40]

    Kamber E Y, Mathur D, Hasted J B 1982 J. Phys. B: At. Mol. Phys. 15 263Google Scholar

    [41]

    Chen Y H, Johnson R E, Humphris R R, Siegel M W, Boring J W 1975 J. Phys. B: At. Mol. Phys. 8 1527Google Scholar

  • 图 1  40 keV 能量下 Ar2+-Ar 碰撞中电子俘获过程的Q 值分布 (a) 单电子俘获; (b) 双电子俘获

    Figure 1.  Q-value distributions for electron capture processes in Ar2+-Ar collisions at 40 keV: (a) Single electron capture; (b) double electron capture.

    图 2  40 keV能量下Ar2+-Ar碰撞过程的单、双电子俘获的散射角分布. 红色实线表示MCBM计算的散射角分布. 黑色竖线为辅助线, 竖线右侧为未完全收集的部分

    Figure 2.  Scattering angle distributions for single and double electron capture in the collision process of Ar2+-Ar at 40 keV energy. The red solid line represents the angular differential cross-section calculated by MCBM. The black vertical lines are auxiliary lines, and the region to the right of the vertical lines indicates the incompletely collected portion

    图 3  40 keV 能量下 Ar2+-N2 碰撞中电子俘获过程的 Q 值分布 (a) 单电子俘获; (b) 双电子俘获

    Figure 3.  Q-value distributions for electron capture processes in Ar2+-N2 collisions at 40 keV: (a) Single electron capture; (b) double electron capture.

    图 4  40 keV能量下Ar2+-N2碰撞过程的单、双电子俘获的散射角分布 (a)单电子俘获过程; (b)双电子俘获过程. 黑色竖线为辅助线, 竖线右侧为未完全收集的部分

    Figure 4.  Scattering angle distributions for single and double electron capture in the collision process of Ar2+-N2 at 40 keV energy: (a) The single electron capture process; (b) the double electron capture process. The black vertical lines are auxiliary lines, and the region to the right of the vertical lines indicates the incompletely collected portion.

    图 5  在40 keV能量下, Ar2+-N2碰撞过程不同散射角范围内双电子俘获的Q值谱, 其中过程 I: Ar2+(3s23p4 3P, 1D, 1S)+N2→Ar(1S)+$ \text{N}_{2}^{2+} $和过程II: Ar2+(3s23p4 3P, 1D, 1S)+N2→Ar(3s23p5nl )+$ \text{N}_{2}^{2+} $

    Figure 5.  Spectrum of Q values for double electron capture in the range of different scattering angles for the Ar2+-N2 collision process at 40 keV energy, where Process I: Ar2+(3s23p4 3P, 1D, 1S)+N2→Ar(1S)+$ \text{N}_{2}^{2+} $and Process II: Ar2+(3s23p4 3P, 1D, 1S)+N2→Ar(3s23p5nl )+$ \text{N}_{2}^{2+} $.

  • [1]

    Cravens T 1997 Geophys. Res. Lett. 24 105Google Scholar

    [2]

    Isler R 1994 Plasma Phys. Control. Fusion 36 171Google Scholar

    [3]

    Team D 2010 Plasma Sci. Technol. 12 11Google Scholar

    [4]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trümper J, West R G 1996 Science 274 205Google Scholar

    [5]

    Wei B R, Zhang R T 2025 Sci. Sin. Phys. Mech. Astron. 55 250008Google Scholar

    [6]

    Cao T, Meng T, Gao Y, Zhang S F, Zhang R T, Yan S, Zhu X L, Wang J, Ma P, Ren B, Xia Z H, Guo D L, Zhang C J, Lin K Z, Xu S, Wei B, Ma X 2023 Astrophys. J. Suppl. Ser. 266 20Google Scholar

    [7]

    Lin K Z, Gao Y, Zhu X L, Zhang S F, Cao T, Guo D L, Shan X, Zhao D M, Chen X J, Ma X 2024 Phys. Rev. A 109 052811Google Scholar

    [8]

    Zhu X B, Xing D D, Lin K Z, Cui S C, Zhu X L, Gao Y, Guo D L, Zhao D M, Zhang S F, Ma X 2024 J. Phys. B: At. Mol. Opt. Phys. 57 045001Google Scholar

    [9]

    Guo D L, Gao J W, Zhang S F, Zhu X L, Gao Y, Zhao D M, Zhang R T, Wu Y, Wang J G, Dubois A, Ma X 2021 Phys. Rev. A 103 032827Google Scholar

    [10]

    Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Gu L, Liang G Y, Guo D L, Gao Y, Zhao D M, Zhang S F, Su M G, Ma X 2021 Astrophys. J. Suppl. Ser. 253 13Google Scholar

    [11]

    Zhu X L, Zhang S F, Gao Y, Guo D L, Xu J W, Zhang R T, Zhao D M, Lin K Z, Zhu X B, Xing D D, Cui S C, Passalidis S, Dubois A, Ma X 2024 Phys. Rev. Lett. 133 173002Google Scholar

    [12]

    Suk H, Guilbaud A, Hird B 1977 Can. J. Phys. 55 1594Google Scholar

    [13]

    Rapp D, Francis W E 1962 J. Chem. Phys. 37 2631Google Scholar

    [14]

    Huber B 1980 J. Phys. B: At. Mol. Phys. 13 809Google Scholar

    [15]

    Shields G C, Moran T 1983 J. Phys. B: At. Mol. Phys. 16 3591Google Scholar

    [16]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156Google Scholar

    [17]

    Meng T, Wu Y, Yin H, Tan X, Ren B, Ma P, Tu B, Yao K, Xiao J, Zou Y, Wei B 2025 Astrophys. J. Suppl. Ser. 279 45Google Scholar

    [18]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [19]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [20]

    Ryufuku H, Sasaki K, Watanabe T 1980 Phys. Rev. A 21 745Google Scholar

    [21]

    Niehaus A 1986 J. Phys. B: At. Mol. Phys. 19 2925Google Scholar

    [22]

    Cornelius K, Wojtkowski K, Olson R E 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2017Google Scholar

    [23]

    Otranto S, Olson R E, Beiersdorfer P 2006 Phys. Rev. A 73 022723Google Scholar

    [24]

    Kallman T, Palmeri P 2007 Rev. Mod. Phys. 79 79Google Scholar

    [25]

    Andersson L, Danared H, Barany A 1987 Nucl. Instrum. Methods Phys. Res. B 23 54Google Scholar

    [26]

    Zygelman B, Cooper D, Ford M, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 3846Google Scholar

    [27]

    Stevens J, Peterson R, Pollack E 1983 Phys. Rev. A 27 2396Google Scholar

    [28]

    Kamber E Y, Mathur D, Hasted J B 1982 J. Phys. B: At. Mol. Phys. 15 2051Google Scholar

    [29]

    Kamber E Y, Jonathan P, Brenton A G, Beynon J H 1987 J. Phys. B: At. Mol. Phys. 20 4129Google Scholar

    [30]

    Smith D, Grief D, Adams N 1979 Int. J. Mass Spectrom. Ion Phys. 30 271Google Scholar

    [31]

    Hird B, Ali S 1981 J. Phys. B: At. Mol. Phys. 14 267Google Scholar

    [32]

    Zhu X L, Cui S C, Xing D D, Xu J W, Najjari B, Zhao D M, Guo D L, Gao Y, Zhang R T, Su M G, Zhang S F, Ma X W 2024 Chin. Phys. B 33 023401Google Scholar

    [33]

    Cui S C, Xing D D, Zhu X L, Su M G, Gao Y, Guo D L, Zhao D M, Zhang S F, Fu Y B, Ma X W 2024 Chin. Phys. B 33 073401Google Scholar

    [34]

    Li Z X, Lin K Z, Zhu X L, Li Z L, Yuan H, Gao Y, Guo D L, Zhao D M, Zhang S F, Ma X W 2025 Chin. Phys. B 34 053401Google Scholar

    [35]

    Xing D D, Cui S C, Wang X X, Zhang D H, Zhu X B, Lin K Z, Gao Y, Guo D L, Zhao D M, Zhang S F, Zhu X L, Ma X 2025 Phys. Rev. A 112 012812Google Scholar

    [36]

    Zhu X L, Ma X, Li J Y, Schmidt M, Feng W T, Peng H, Xu J W, Zschornack G, Liu H P, Zhang T M, Zhao D M, Guo D L, Huang Z K, Zhou X M, Gao Y, Cheng R, Wang H B, Yang J, Kang L 2019 Nucl. Instrum. Methods Phys. Res. B 460 224Google Scholar

    [37]

    Ma X, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [38]

    Kramida A, Yu Ralchenko, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (Ver. 5.12) https://physics.nist.gov/asd [2025-9-8]

    [39]

    Kamber E Y, Quintana E J, Pollack E 1993 J. Phys. B: At. Mol. Opt. Phys. 26 113Google Scholar

    [40]

    Kamber E Y, Mathur D, Hasted J B 1982 J. Phys. B: At. Mol. Phys. 15 263Google Scholar

    [41]

    Chen Y H, Johnson R E, Humphris R R, Siegel M W, Boring J W 1975 J. Phys. B: At. Mol. Phys. 8 1527Google Scholar

  • [1] HUANG Houke, WEN Weiqiang, HUANG Zhongkui, WANG Shuxing, TANG Meitang, LI Jie, MAO Lijun, YUAN Yang, WAN Mengyu, LIU Chang, WANG Hanbing, ZHOU Xiaopeng, ZHAO Dongmei, YAN Kaiming, ZHOU Yunbin, YUAN Youjin, YANG Jiancheng, ZHANG Shaofeng, ZHU Linfan, MA Xinwen. Simulation study of precision spectroscopy of dielectronic recombination for highly charged heavy ions at HIAF. Acta Physica Sinica, 2025, 74(4): 043101. doi: 10.7498/aps.74.20241589
    [2] NIU Jiajie, ZHANG Weiwei, QI Yueying, GAO Junwen. Theoretical study of state-selective charge exchange processes in collisions between highly charged N6+ ions and H atoms. Acta Physica Sinica, 2025, 74(15): 153402. doi: 10.7498/aps.74.20250541
    [3] LIANG Yaqiong, LIANG Guiyun. Solar wind charge-exchange X-ray emission factor based on ACE observation data. Acta Physica Sinica, 2025, 74(10): 103201. doi: 10.7498/aps.74.20241603
    [4] ZHANG Ziqi, YAN Shuncheng, TAO Chenyu, YU Xuan, ZHANG Shaofeng, MA Xinwen. Dissociation mechanism of ethane dication via three-body fragmentation. Acta Physica Sinica, 2025, 74(6): 063401. doi: 10.7498/aps.74.20250008
    [5] CHENG Yu, REN Jieru, MA Bubo, LIU Yun, ZHAO Ziqian, WEI Wenqing, Dieter H. H. Hoffmann, DENG Zhigang, QI Wei, ZHOU Weimin, CHENG Rui, LI Zhongliang, SONG Lei, LI Yuan, ZHAO Yongtao. Charge transfer process of laser-accelerated low-energy carbon ion beams in porous CHO foams. Acta Physica Sinica, 2025, 74(15): 154102. doi: 10.7498/aps.74.20250634
    [6] ZHANG Chongrui, HE Wenliang, CAO Shiquan, XIE Luyou, DONG Chenzhong. Theoretical study on charge-state evolution of carbon ions passing through hydrogen plasma. Acta Physica Sinica, 2025, 74(18): 185203. doi: 10.7498/aps.74.20250668
    [7] Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren. Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He. Acta Physica Sinica, 2024, 73(24): 240701. doi: 10.7498/aps.73.20241290
    [8] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, 2021, 70(8): 080702. doi: 10.7498/aps.70.20201685
    [9] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [10] Zhang Min, Yan Shun-Cheng, Gao Yong, Zhang Shao-Feng, Ma Xin-Wen. Methods of calibrating kinetic energy release in dissociation process of molecular dications. Acta Physica Sinica, 2020, 69(20): 203401. doi: 10.7498/aps.69.20200901
    [11] He Bin, Ding Ding, Qu Shi-Xian, Wang Jian-Guo. Investigation of state-selective cross-sections for excitation processes of the collisions of He2++ H(1s) in strong magnetic fields. Acta Physica Sinica, 2013, 62(7): 073401. doi: 10.7498/aps.62.073401
    [12] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [13] Guo Da-Long, Ma Xin-Wen, Feng Wen-Tian, Zhang Shao-Feng, Zhu Xiao-Long. Analysis of momentum and energy resolutions of the reaction microscope. Acta Physica Sinica, 2011, 60(11): 113401. doi: 10.7498/aps.60.113401
    [14] Ju Zhi-Ping, Cao Wu-Fei, Liu Xiao-Wei. Study of scattering angular distribution of proton using Monte-Carlo method. Acta Physica Sinica, 2009, 58(1): 174-177. doi: 10.7498/aps.58.174
    [15] Zhao Yi-Qing, Liu Ling, Liu Chun-Lei, Xue Ping, Wang Jian-Guo. Atom-orbital close-coupling calculation of charge exchange processes in collisions of H+ with Li(5d). Acta Physica Sinica, 2009, 58(5): 3248-3254. doi: 10.7498/aps.58.3248
    [16] Zhu Xiao-Long, Ma Xin-Wen, Li Bin, Liu Hui-Ping, Chen Lan-Fang, Zhang Shao-Feng, Feng Wen-Tian, Sha Shan, Qian Dong-Bin, Cao Shi-Ping, Zhang Da-Cheng. Experimental differential investigation of state-selective single electron capture in slow He2+-He collisions. Acta Physica Sinica, 2009, 58(3): 2077-2082. doi: 10.7498/aps.58.2077
    [17] Cao Shi-Ping, Ma Xin-Wen, Dorn A., Dürr M., Ullrich J.. Correlation of emitted electrons in near threshold double ionization of helium by electron impact. Acta Physica Sinica, 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [18] Yang Chao-Wen, Miao Jing-Wei, Wang Guang-Lin, Liu Xiao-Dong, Shi Mian-Gong. The electron exchange of MeV hydrogen micro-cluster ions with solids. Acta Physica Sinica, 2006, 55(11): 5810-5814. doi: 10.7498/aps.55.5810
    [19] Yang Bai-Fang, Miao Jing-Wei, Yang Chao-Wen, Shi Mian-Gong, Tang A-You, Liu Xiao-Dong. . Acta Physica Sinica, 2002, 51(1): 55-62. doi: 10.7498/aps.51.55
    [20] JIA XIANG-FU, YAND WEI. ANGULAR DISTRIBUTIONS IN THE LOW-ENERGY (e,2e) REACTION OF Li+. Acta Physica Sinica, 1998, 47(11): 1783-1789. doi: 10.7498/aps.47.1783
Metrics
  • Abstract views:  553
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  25 August 2025
  • Accepted Date:  10 September 2025
  • Available Online:  10 October 2025
  • Published Online:  20 December 2025
  • /

    返回文章
    返回