Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Absolute error analysis of vacuum virtual cathode measurement

HAI Jun LI Jianquan ZHANG Zhijuan WANG Hanghang

Citation:

Absolute error analysis of vacuum virtual cathode measurement

HAI Jun, LI Jianquan, ZHANG Zhijuan, WANG Hanghang
cstr: 32037.14.aps.74.20251188
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The virtual cathode is an important phenomenon in thermionic emission, and it is widely present in various electronic devices and systems such as vacuum tubes, electron guns, high-power microscopes, X-ray tubes, concentrated solar thermionic converters, and emissive probes. Since the virtual cathode can directly affect the performance of these devices, it is of great significance to study the characteristics of the virtual cathode and conduct experimental measurements on it. In our recent research, a one-dimensional model of thermionic emission was established, and the analytical expressions for the potential barrier and the spatial width of the virtual cathode were derived. With the development of virtual cathode theories, measuring the virtual cathode experimentally has become a reality. In this study, based on our one-dimensional theoretical model, the absolute error theory of the virtual cathode is established, and the contributions of different parameters, such as the hot-cathode temperature, the saturated electron emission current, the electron collection current, Dushman constant, and the work function of hot cathodes, to the absolute errors in the virtual cathode measurement are systematically analyzed. The research results show that the main factors affecting the measurement of the virtual cathode potential are closely related to the size of the virtual cathode. When the virtual cathode potential generated by hot-cathodes is strong, the uncertainty of the hot-cathode temperature becomes the main error source, with a probability of about 61% for the potential barrier measurement, but when the virtual cathode is weak, the main factor becomes the uncertainty of the electron current measurement with a probability of about 39%. Besides, when measuring the virtual cathode width, for common hot-cathodes such as oxide (BaO) cathode, tungsten cathode, and molybdenum cathode, the main factors affecting the measurement results are the uncertainties in the hot-cathode temperature and the work function. These uncertainties account for approximately 94%, 96% and 97% of the measurement variability, corresponding to the above three cathodes, respectively. Only when the virtual cathode is very weak, does the uncertainty of the electron current become the main error source for the measurement of the virtual cathode width.
      Corresponding author: LI Jianquan, liHjianquan@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2024MS116), the Doctoral Scientific Research Staring Foundation of Pingdingshan University, China (Grant No. PXY-BSQD-2024025), and the Key Science and Technology Program of Henan Province, China (Grant No. 252102230127).
    [1]

    Kurkin S A, Koronovski A A, Hramov A E 2009 Plasma Phys. Rep. 35 628Google Scholar

    [2]

    Kurkin S A, Hramov A E 2009 Tech. Phys. Lett. 35 23Google Scholar

    [3]

    Kurilenkov Y K, Tarakanov V P, Gus'kov S Y, Oginov A V, Karpukhin V T 2018 Contrib. Plasma Phys. 58 952Google Scholar

    [4]

    Nebel R A, Stange S, Park J, Taccetti J M, Murali S K, Garcia C E 2005 Phys. Plasmas 12 012701Google Scholar

    [5]

    Mahto M, Jain P K 2018 IEEE Trans. Plasma Sci. 46 518Google Scholar

    [6]

    Kostov K G, Nikolov N A, Spassovsky I P, Spassov V A 1992 Appl. Phys. Lett. 60 2598Google Scholar

    [7]

    Kostov K G, Nikolov N A 1994 Phys. Plasmas 1 1034Google Scholar

    [8]

    Valletti L, Fantauzzi S, Paolo F D 2023 IEEE Trans. Electron Devices 70 3864Google Scholar

    [9]

    Li L M, Cheng G X, Zhang L, Ji X, Chang L, Xu Q F, Liu L, Wen J C, Li C L, Wan H 2011 J. Appl. Phys. 109 074504Google Scholar

    [10]

    苏东, 邓立科, 王斌 2014 物理学报 63 235204Google Scholar

    Su D, Deng L K, Wang B 2014 Acta Phys. Sin. 63 235204Google Scholar

    [11]

    王道泳, 马锦绣, 李毅人, 张文贵 2009 物理学报 58 8432Google Scholar

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432Google Scholar

    [12]

    Smith J R, Hershkowitz N, Coakley P 1979 Rev. Sci. Instrum. 50 210Google Scholar

    [13]

    Marek A, Jílek M, Picková I, Kudrna P, Tichý M, Schrittwieser R, Ionita C 2008 Contrib. Plasma Phys. 48 491Google Scholar

    [14]

    Ye M Y, Takamura S 2000 Phys. Plasmas 7 3457Google Scholar

    [15]

    Seif M N, Zhou Q F, Liu X T, Balk T J, Beck M J 2022 IEEE Trans. Electron Devices 69 3523Google Scholar

    [16]

    Child C D 1911 Phys. Rev. 32 492Google Scholar

    [17]

    Langmuir I 1913 Phys. Rev. 2 450Google Scholar

    [18]

    Langmuir I 1923 Phys. Rev. 21 419Google Scholar

    [19]

    Langmuir I, Compton K T 1931 Rev. Mod. Phys. 3 191Google Scholar

    [20]

    Li J Q, Li S H, Ma H J 2024 Phys. Scr. 99 055974Google Scholar

    [21]

    Li J Q, Li S H 2024 J. Appl. Phys. 136 105105Google Scholar

    [22]

    Li J Q, Xie X Y, Li S H, Zhang Q H 2022 Vacuum 200 111013Google Scholar

    [23]

    Li S H, Li J Q 2021 Vacuum 192 110496Google Scholar

    [24]

    Kalinin Y A, Hramov A E 2006 Tech. Phys. 51 558Google Scholar

    [25]

    李建泉 2024 发射探针: 原理、装置及应用(天津: 天津大学出版社) 第157—176页

    Li J Q 2024 Emissive Probes: Principles, Devices and Applications (Tianjin: Tianjin University Press) pp157–176

    [26]

    Zhang J F 2006 IEEE Trans. Reliab. 55 169Google Scholar

    [27]

    Purwar H, Goutierre E, Guler H, et al. 2023 J. Phys. Commun. 7 025002Google Scholar

    [28]

    Bekker T B, Rashchenko S V, Seryotkin Y V, Kokh A E, Davydov A V, Fedorov P P 2017 J. Am. Ceram. Soc. 101 450Google Scholar

  • 图 1  虚拟阴极电势绝对误差的系数函数值分布

    Figure 1.  Distribution of coefficient function values of the absolute error of the virtual cathode potential.

    图 2  钨阴极产生的虚拟阴极宽度的绝对误差系数函数值分布

    Figure 2.  Distribution of coefficient function values of the absolute error of the virtual cathode width generated by the tungsten cathode.

    图 3  在钨阴极的工作温度范围内, 交点$ {Q_2} $和$ {Q_3} $附近的系数函数值分布

    Figure 3.  Within the operating temperature range of the tungsten cathode, the distribution of coefficient function values near points $ {Q_2} $ and $ {Q_3} $.

    图 4  交点$ {Q_2} $和$ {Q_3} $的位置随N值的变化

    Figure 4.  Positional relationship of $ {Q_2} $ and $ {Q_3} $ with respect to the N values.

    表 1  钨阴极产生的虚拟阴极宽度的主要影响因素与Y值之间的关系

    Table 1.  Relation between the main influencing factors of the virtual cathode width generated by the tungsten cathode and Y values.

    Y值大小 函数值大小 主要因素
    0 < Y < Q3 $ {f_2} \approx {f_5} > {f_3} > {f_4} $ T 和 $ {\phi _{\rm work}} $
    Q3 < Y < Q2 $ {f_2} > {f_3} > {f_5} > {f_4} $ T
    Q2 < Y < 1 $ {f_3} > {f_2} \approx {f_5} > {f_4} $ $ {I_{\text{E}}} $和$ {I_{\text{C}}} $
    DownLoad: CSV

    表 2  几种常见热阴极材料的N值以及交点$ {Q_2} $和$ {Q_3} $位置的计算结果

    Table 2.  Calculation results of the N values of several common thermionic cathode materials, as well as the positions of $ {Q_2} $ and $ {Q_3} $.

    阴极材料 $ {\phi _{{\text{work}}}} $/eV T/K $ N = \dfrac{{{\phi _{{\text{work}}}}}}{{kT}} $ $ {Y_{{Q_3}}} $ $ {Y_{{Q_2}}} $
    BaO 1.65 1200—2200 8.7—16.0 0.9384—0.9676 0.9420—0.9686
    W 4.56 1800—3650 14.5—29.4 0.9641—0.9827 0.9653—0.9830
    Mo 4.24 1700—2890 17.0—28.9 0.9696—0.9823 0.9705—0.9827
    DownLoad: CSV
  • [1]

    Kurkin S A, Koronovski A A, Hramov A E 2009 Plasma Phys. Rep. 35 628Google Scholar

    [2]

    Kurkin S A, Hramov A E 2009 Tech. Phys. Lett. 35 23Google Scholar

    [3]

    Kurilenkov Y K, Tarakanov V P, Gus'kov S Y, Oginov A V, Karpukhin V T 2018 Contrib. Plasma Phys. 58 952Google Scholar

    [4]

    Nebel R A, Stange S, Park J, Taccetti J M, Murali S K, Garcia C E 2005 Phys. Plasmas 12 012701Google Scholar

    [5]

    Mahto M, Jain P K 2018 IEEE Trans. Plasma Sci. 46 518Google Scholar

    [6]

    Kostov K G, Nikolov N A, Spassovsky I P, Spassov V A 1992 Appl. Phys. Lett. 60 2598Google Scholar

    [7]

    Kostov K G, Nikolov N A 1994 Phys. Plasmas 1 1034Google Scholar

    [8]

    Valletti L, Fantauzzi S, Paolo F D 2023 IEEE Trans. Electron Devices 70 3864Google Scholar

    [9]

    Li L M, Cheng G X, Zhang L, Ji X, Chang L, Xu Q F, Liu L, Wen J C, Li C L, Wan H 2011 J. Appl. Phys. 109 074504Google Scholar

    [10]

    苏东, 邓立科, 王斌 2014 物理学报 63 235204Google Scholar

    Su D, Deng L K, Wang B 2014 Acta Phys. Sin. 63 235204Google Scholar

    [11]

    王道泳, 马锦绣, 李毅人, 张文贵 2009 物理学报 58 8432Google Scholar

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432Google Scholar

    [12]

    Smith J R, Hershkowitz N, Coakley P 1979 Rev. Sci. Instrum. 50 210Google Scholar

    [13]

    Marek A, Jílek M, Picková I, Kudrna P, Tichý M, Schrittwieser R, Ionita C 2008 Contrib. Plasma Phys. 48 491Google Scholar

    [14]

    Ye M Y, Takamura S 2000 Phys. Plasmas 7 3457Google Scholar

    [15]

    Seif M N, Zhou Q F, Liu X T, Balk T J, Beck M J 2022 IEEE Trans. Electron Devices 69 3523Google Scholar

    [16]

    Child C D 1911 Phys. Rev. 32 492Google Scholar

    [17]

    Langmuir I 1913 Phys. Rev. 2 450Google Scholar

    [18]

    Langmuir I 1923 Phys. Rev. 21 419Google Scholar

    [19]

    Langmuir I, Compton K T 1931 Rev. Mod. Phys. 3 191Google Scholar

    [20]

    Li J Q, Li S H, Ma H J 2024 Phys. Scr. 99 055974Google Scholar

    [21]

    Li J Q, Li S H 2024 J. Appl. Phys. 136 105105Google Scholar

    [22]

    Li J Q, Xie X Y, Li S H, Zhang Q H 2022 Vacuum 200 111013Google Scholar

    [23]

    Li S H, Li J Q 2021 Vacuum 192 110496Google Scholar

    [24]

    Kalinin Y A, Hramov A E 2006 Tech. Phys. 51 558Google Scholar

    [25]

    李建泉 2024 发射探针: 原理、装置及应用(天津: 天津大学出版社) 第157—176页

    Li J Q 2024 Emissive Probes: Principles, Devices and Applications (Tianjin: Tianjin University Press) pp157–176

    [26]

    Zhang J F 2006 IEEE Trans. Reliab. 55 169Google Scholar

    [27]

    Purwar H, Goutierre E, Guler H, et al. 2023 J. Phys. Commun. 7 025002Google Scholar

    [28]

    Bekker T B, Rashchenko S V, Seryotkin Y V, Kokh A E, Davydov A V, Fedorov P P 2017 J. Am. Ceram. Soc. 101 450Google Scholar

  • [1] Li Han-Xi, Wang De-Zhen. Simulation of effect of thermionic emission on magnetized sheath near target plate of tungsten divertor. Acta Physica Sinica, 2023, 72(15): 159401. doi: 10.7498/aps.72.20230276
    [2] Shang Ji-Hua, Yang Xin-Yu, Sun Da-Peng, Zhang Jiu-Xing. Improvement of barium tungsten cathode and investigation of thermionic emission performance. Acta Physica Sinica, 2022, 71(4): 047901. doi: 10.7498/aps.71.20211684
    [3] Improvement of barium tungsten cathode and investigation of thermionic emission performance. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211684
    [4] Zhang Hong-Yan, Bao Li-Hong, Chao Luo-Meng, Zhao Feng-Qi, Liu Zi-Zhong. Optical absorption and thermionic emission mechanism of multi-functional La1–x Srx B6 hexaborides. Acta Physica Sinica, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [5] Hao Guang-Hui, Han Pan-Yang, Li Xing-Hui, Li Ze-Peng, Gao Yu-Juan. The electron emission characteristics of GaAs photocathode with vacuum-channel structure. Acta Physica Sinica, 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [6] Hao Guang-Hui, Li Ze-Peng, Gao Yu-Juan, Zhou Ya-Kun. Effect of surface topography on emission properties of hot-cathode. Acta Physica Sinica, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [7] Liu Hong-Liang, Zhang Xin, Wang Yang, Xiao Yi-Xin, Zhang Jiu-Xing. Surface electronic structures and emission property of single crystal LaB6 typical surfaces. Acta Physica Sinica, 2018, 67(4): 048101. doi: 10.7498/aps.67.20172187
    [8] Xu Feng1\2, Yu Guo-Hao, Deng Xu-Guang, Li Jun-Shuai, Zhang Li, Song Liang, Fan Ya-Ming, Zhang Bao-Shun. Current transport mechanism of Schottky contact of Pt/Au/n-InGaN. Acta Physica Sinica, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [9] Wang Qiu-Ping, Feng Yu-Jun, Xu Zhuo, Cheng Peng-Fei, Feng Fei-Long. Electron emission from Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric cathode. Acta Physica Sinica, 2015, 64(24): 247701. doi: 10.7498/aps.64.247701
    [10] Liang Wen-Long, Wang Yi-Man, Liu Wei, Li Hong-Yi, Wang Jin-Shu. Study of mini-themionic electron sources for vacuum electron THz devices. Acta Physica Sinica, 2014, 63(5): 057901. doi: 10.7498/aps.63.057901
    [11] Bao Li-Hong, Narengerile, O. Tegus, Zhang Xin, Zhang Jiu-Xing. Synthesis and properties of LaxCe1-xB6 compounds by in-situ spark plasma sintering. Acta Physica Sinica, 2013, 62(19): 196105. doi: 10.7498/aps.62.196105
    [12] Zuo Ying-Hong, Wang Jian-Guo, Zhu Jin-Hui, Niu Sheng-Li, Fan Ru-Yu. Investigation of the cathode electric field at the initial stage of explosive electron emission. Acta Physica Sinica, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [13] Yang Jin-Hui, Song Jun-Qiang. Study on the mean absolute growth of model error for chaos system. Acta Physica Sinica, 2012, 61(22): 220510. doi: 10.7498/aps.61.220510
    [14] Peng Kai, Liu Da-Gang. Numerical simulation and study of three-dimensional thermal field emission. Acta Physica Sinica, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [15] Wang Dao-Yong, Ma Jin-Xiu, Li Yi-Ren, Zhang Wen-Gui. Sheath structure of a hot-cathode in plasma. Acta Physica Sinica, 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
    [16] Yu Jian-Hua, Lai Jian-Jun, Huang Jian-Jun, Wang Xin-Bin, Qui Jun-Lin. . Acta Physica Sinica, 2002, 51(9): 2080-2085. doi: 10.7498/aps.51.2080
    [17] He Yu, Guo Wen-Kang, Shao Qi-Jun, Xu Peng. . Acta Physica Sinica, 2000, 49(3): 487-491. doi: 10.7498/aps.49.487
    [18] ZHANG EN-QIU. THEORY OF THERMIONIC EMISSION (I)——A CRITICISM OF THE SEMI-CONDUCTOR MODEL OF THE OXIDE-COATED CATHODE. Acta Physica Sinica, 1974, 23(5): 43-52. doi: 10.7498/aps.23.43
    [19] . Acta Physica Sinica, 1965, 21(3): 689-690. doi: 10.7498/aps.21.689
    [20] HWA C. Y.. ON THE THEORY OF LINEARITY OF HOT-CATHODE IONIZATION GAUGE. Acta Physica Sinica, 1963, 19(2): 73-82. doi: 10.7498/aps.19.73
Metrics
  • Abstract views:  524
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  01 September 2025
  • Accepted Date:  19 September 2025
  • Available Online:  26 September 2025
  • Published Online:  20 December 2025
  • /

    返回文章
    返回