Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetocaloric properties of additively manufacturing La(Fe, Si)13-based gradient alloys with wide temperature range

XIE Longlong QIN Yazhou SUN Jiayi QIAO Kaiming LIU Jian ZHANG Hu

Citation:

Magnetocaloric properties of additively manufacturing La(Fe, Si)13-based gradient alloys with wide temperature range

XIE Longlong, QIN Yazhou, SUN Jiayi, QIAO Kaiming, LIU Jian, ZHANG Hu
cstr: 32037.14.aps.74.20251317
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Magnetic refrigeration technology, featuring environmental friendliness, energy efficiency and high performance, is recognized as a next-generation refrigeration technology with the potential to replace gas compression refrigeration technology. However, current magnetic refrigeration materials typically exhibit an excessively narrow phase transition temperature range (≤10 K), thus necessitating the stacking of materials with multiple compositions to meet the practical refrigeration temperature span. In this study, the typical La(Fe, Si)13-based magnetic refrigeration material is selected, and an innovative gradient laser powder bed fusion technology is adopted to obtain 3D-print La0.70Ce0.30Fe11.65–xMnxSi1.35 alloys with horizontal compositional gradients (where the Mn content varies continuously from 0 to 0.64). Systematic characterization of their microstructures, magnetic properties, and magnetocaloric effects indicates that this technology enables a controllable gradient distribution of compositions along the powder bed plane and high-throughput preparation, thereby achieving a continuous variation of the Curie temperature of the gradient alloy over a wide temperature range from 134 K to 174 K. With the increase of Mn content, the phase transition of the alloy gradually changes from a weak first-order phase transition to a second-order phase transition, and the peak shape of the magnetic entropy change curve shifts from “sharp and high” to “broad and flat”. The full width at half maximum of the temperature range is extended to 83.3 K, allowing the gradient alloy to maintain high refrigeration capacity (RC ~130 J/kg, 3 T) at all time. This study breaks through the bottlenecks of traditional material preparation and performance via gradient additive manufacturing, providing a novel technical pathway for achieving high-throughput preparation and performance optimization of magnetic refrigeration materials.
      Corresponding author: LIU Jian, liujian@shu.edu.cn ; ZHANG Hu, zhanghu@ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3501204), the National Natural Science Foundation of China (Grant Nos. 52171169, 52101210), the Open Fund of the State Key Laboratory for Advanced Metals and Materials, China (Grant No. 2023-ZD01), the Concept Verification Support Program of University of Science and Technology Beijing, China (Grant No. GNYZ-2024-6), and the Open Project of Sino-Foreign Humanities Exchange Research on Science, Technology and Civilization of University of Science and Technology Beijing, China (Grant Nos. 2024KFZD001, 2024KFYB004).
    [1]

    Xie L L, Liang C G, Qin Y Z, Zhou H, Yu Z Y, Chen H D, Naeem M Z, Qiao K M, Wen Y J, Zhang B C, Wang G F, Li X, Liu J, Franco V, Chu K, Yi M, Zhang H 2024 Adv. Func. Mater. 35 2414441Google Scholar

    [2]

    张虎, 邢成芬, 龙克文, 肖亚宁 陶坤, 王利晨, 龙毅 2018 物理学报 67 207501Google Scholar

    Zhang H, Xing C F, Long K W, Xiao Y N, Tao K, Wang L C, Long Y 2018 Acta Phys. Sin. 67 207501Google Scholar

    [3]

    Zhou H, Tao K, Chen B, Chen H D, Qiao K M, Yu Z Y, Cong J Z, Huang R J, Taskaev S V, Zhang H 2022 Acta Mater. 229 117830Google Scholar

    [4]

    Chmielus M, Zhang X X, Witherspoon C, Dunand D C, Müllner P 2009 Nature Mater. 8 863Google Scholar

    [5]

    Zhang H, Li Y W, Liu E K, Tao K, Wu M L, Wang Y X, Zhou H B, Xue Y J, Cheng C, Yan T, Long K W, Long Y 2017 Mater. Design 114 531Google Scholar

    [6]

    Guo W H, Miao X F, Cui J Y, Torii S K, Qian F J, Bai Y Q, Kou Z D, Zha J J, Shao Y Y, Zhang Y J, Xu F, Caron L 2024 Acta Mater. 263 119530Google Scholar

    [7]

    Imaizumi K, Fujita A, Suzuki A, Kobashi M, Ozaki K 2022 Acta Mater. 227 117726Google Scholar

    [8]

    Beckmann B, Taubel A, Gottschall T, Pfeuffer L, Koch D, Staab F, Bruder E, Scheibel F, Skokov K P, Gutfleisch O 2025 Acta Mater. 282 120460Google Scholar

    [9]

    Çakır A, Righi L, Albertini F, Acet M, Farle M 2015 Acta Mater. 99 140Google Scholar

    [10]

    Fries M, Pfeuffer L, Bruder E, Gottschall T, Ener S, Diop L V B, Gröb T, Skokov K P, Gutfleisch O 2017 Acta Mater. 132 222Google Scholar

    [11]

    Dan’kov S Y, Tishin A M, Pecharsky V K, Gschneidner K A 1998 Phys. Rev. B 57 3478Google Scholar

    [12]

    Zhang H, Sun Y J, Niu E, Hu F X, Sun J R, Shen B G 2014 Appl. Phys. Lett. 104 062407Google Scholar

    [13]

    Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y 2012 J. Appl. Phys. 111 07A909Google Scholar

    [14]

    Miao X F, Wang C X, Liao T W, Ju S H, Zha J J, Wang W Y, Liu J, Zhang Y J, Ren Q Y, Xu F, Caron L 2023 Acta Mater. 242 118453Google Scholar

    [15]

    Kang K H, Lee A Y, Ahn H, Lee W, Kim J W 2025 J. Magn. Magn. Mater. 614 172753Google Scholar

    [16]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nature Mater. 11 620Google Scholar

    [17]

    Gottschall T, Gràcia-Condal A, Fries M, Taubel A, Pfeuffer L, Mañosa L, Planes A, Skokov K P, Gutfleisch O 2018 Nature Mater. 17 929Google Scholar

    [18]

    Qiao K M, Cui Z, Hao X W, Zhao Q, Xu Y X, Wang D K, Liu J Y, Wang D D, Xia Y G, Yin W, Hao J Z, He L H, Romero-Muñiz C, Law J Y, Franco V, Ren Q Y, Zhang H 2025 Acta Mater. 297 121344Google Scholar

    [19]

    Li Y, Zeng Q Q, Wei Z Y, Liu E K, Han X L, Du Z W, Li L W, Xi X K, Wang W H, Wang S G, Wu G H 2019 Acta Mater. 174 289Google Scholar

    [20]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [21]

    Onuike B, Heer B, Bandyopadhyay A 2018 Addit. Manuf. 21 133

    [22]

    Wen Y J, Wu X K, Huang A K, Narayan R L, Wang P, Zhang L J, Zhang B C, Ramamurty U, Qu X H 2024 Acta Mater. 264 119572Google Scholar

    [23]

    Wen Y J, Zhang B C, Narayan R L, Wang P, Song X, Zhao H, Ramamurty U, Qu X H 2021 Addit. Manuf. 40 101926

    [24]

    Wen Y J, Gao Y, Narayan R L, Cai W, Wang P, Wei X D, Zhang B C, Ramamurty U, Qu X H 2025 Int. J. Plasticity 189 104342Google Scholar

    [25]

    Liu J, He C, Zhang M X, Yan A R 2016 Acta Mater. 118 44Google Scholar

    [26]

    Shao Y Y, Liu J, Zhang M X, Yan A R, Skokov K P, Karpenkov D Y, Gutfleisch O 2017 Acta Mater. 125 506Google Scholar

    [27]

    Sun Y, Lv W J, Liang Y, Gao Y, Cui W J, Yan Y J, Zhao W Y, Zhang Q J, Sang X H 2023 Scripta Mater. 223 115068Google Scholar

    [28]

    Krautz M, Skokov K, Gottschall T, Teixeira C S, Waske A, Liu J, Schultz L, Gutfleisch O 2014 J. Alloys Compd. 598 27Google Scholar

    [29]

    Eggert B, Lill J, Günzing D, Terwey A, Radulov I A, Wilhelm F, Rogalev A, Rovezzi M, Skokov K, Ollefs K, Gutfleisch O, Gruner M E, Wende H 2025 J. Alloys Compd. 1031 180586Google Scholar

    [30]

    Zhang X, Wang K, Huang K L, Yao Q R, Lu Z, Long Q X, Deng J Q, Wang J, Zhou H Y 2024 J. Magn. Magn. Mater. 607 172379Google Scholar

    [31]

    Miao L Y, Lu X, Wei Z Y, Zhang Y F, Zhang Y X, Liu J 2023 Acta Mater. 245 118635Google Scholar

    [32]

    Lovell E, Pereira A M, Caplin A D, Lyubina J, Cohen L F 2014 Adv. Energy Mater. 5 1401639Google Scholar

    [33]

    Lai J W, Sepehri-Amin H, Tang X, Li J, Matsushita Y, Ohkubo T, Saito A T, Hono K 2021 Acta Mater. 220 117286Google Scholar

    [34]

    Liu J, Krautz M, Skokov K, Woodcock T G, Gutfleisch O 2011 Acta Mater. 59 3602Google Scholar

    [35]

    杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚 2018 物理学报 67 077501Google Scholar

    Yang J J, Zhao J L, Xu L, Zhang H G, Yue M, Liu D M, Jiang Y J 2018 Acta Phys. Sin. 67 077501Google Scholar

  • 图 1  La(Fe, Si)13原始粉末的形状和尺寸分布 (a), (b) Mn0和Mn0.64粉末的SEM图像; (c), (d) Mn0和Mn0.64粉末的粒径分布结果

    Figure 1.  Morphology and size distribution of as-prepared La(Fe, Si)13 powders: (a), (b) SEM images of Mn0 and Mn0.64 powders; (c), (d) particle size distribution results of Mn0 and Mn0.64 powders.

    图 2  打印态CGAs的制备 (a) 制备流程图; (b) 不同形状梯度样品的宏观图像; (c) 沿梯度方向切片所得的62个样品, 编号为S1—S62

    Figure 2.  Preparation of as-printed CGAs: (a) Preparation flow chart; (b) macrographs of gradient samples with different shapes; (c) 62 samples obtained by slicing along the gradient direction, numbered as S1—S62.

    图 3  退火态CGAs的结构和成分演变 (a) XRD图谱; (b) 通过Rietveld精修得到的对应晶格参数; (c) EDS点扫描得到的1:13相Fe和Mn含量

    Figure 3.  Microstructural and compositional evolution of as-annealed CGAs: (a) XRD patterns; (b) corresponding lattice parameters via Rietveld refinement; (c) Fe and Mn contents of the 1:13 phase by EDS point scanning.

    图 4  退火态CGAs的磁相变 (a) 10 mT外磁场下的M-T曲线; (b) dM/dT曲线; (c) 居里温度

    Figure 4.  Magnetic phase transition temperatire of as-annealed CGAs: (a) M-T curves under magnetic field of 10 mT; (b) dM/dT curves; (c) Curie temperature results.

    图 5  退火态CGAs在0—3 T磁场下测得的磁化等温线

    Figure 5.  Magnetization isotherms of as-annealed CGAs measured under a magnetic field of 0–3 T.

    图 6  3 T磁场下退火态CGAs的磁熵变随温度的变化曲线

    Figure 6.  Temperature dependence of |ΔSM| for CGAs under a magnetic field change of 3 T.

  • [1]

    Xie L L, Liang C G, Qin Y Z, Zhou H, Yu Z Y, Chen H D, Naeem M Z, Qiao K M, Wen Y J, Zhang B C, Wang G F, Li X, Liu J, Franco V, Chu K, Yi M, Zhang H 2024 Adv. Func. Mater. 35 2414441Google Scholar

    [2]

    张虎, 邢成芬, 龙克文, 肖亚宁 陶坤, 王利晨, 龙毅 2018 物理学报 67 207501Google Scholar

    Zhang H, Xing C F, Long K W, Xiao Y N, Tao K, Wang L C, Long Y 2018 Acta Phys. Sin. 67 207501Google Scholar

    [3]

    Zhou H, Tao K, Chen B, Chen H D, Qiao K M, Yu Z Y, Cong J Z, Huang R J, Taskaev S V, Zhang H 2022 Acta Mater. 229 117830Google Scholar

    [4]

    Chmielus M, Zhang X X, Witherspoon C, Dunand D C, Müllner P 2009 Nature Mater. 8 863Google Scholar

    [5]

    Zhang H, Li Y W, Liu E K, Tao K, Wu M L, Wang Y X, Zhou H B, Xue Y J, Cheng C, Yan T, Long K W, Long Y 2017 Mater. Design 114 531Google Scholar

    [6]

    Guo W H, Miao X F, Cui J Y, Torii S K, Qian F J, Bai Y Q, Kou Z D, Zha J J, Shao Y Y, Zhang Y J, Xu F, Caron L 2024 Acta Mater. 263 119530Google Scholar

    [7]

    Imaizumi K, Fujita A, Suzuki A, Kobashi M, Ozaki K 2022 Acta Mater. 227 117726Google Scholar

    [8]

    Beckmann B, Taubel A, Gottschall T, Pfeuffer L, Koch D, Staab F, Bruder E, Scheibel F, Skokov K P, Gutfleisch O 2025 Acta Mater. 282 120460Google Scholar

    [9]

    Çakır A, Righi L, Albertini F, Acet M, Farle M 2015 Acta Mater. 99 140Google Scholar

    [10]

    Fries M, Pfeuffer L, Bruder E, Gottschall T, Ener S, Diop L V B, Gröb T, Skokov K P, Gutfleisch O 2017 Acta Mater. 132 222Google Scholar

    [11]

    Dan’kov S Y, Tishin A M, Pecharsky V K, Gschneidner K A 1998 Phys. Rev. B 57 3478Google Scholar

    [12]

    Zhang H, Sun Y J, Niu E, Hu F X, Sun J R, Shen B G 2014 Appl. Phys. Lett. 104 062407Google Scholar

    [13]

    Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y 2012 J. Appl. Phys. 111 07A909Google Scholar

    [14]

    Miao X F, Wang C X, Liao T W, Ju S H, Zha J J, Wang W Y, Liu J, Zhang Y J, Ren Q Y, Xu F, Caron L 2023 Acta Mater. 242 118453Google Scholar

    [15]

    Kang K H, Lee A Y, Ahn H, Lee W, Kim J W 2025 J. Magn. Magn. Mater. 614 172753Google Scholar

    [16]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nature Mater. 11 620Google Scholar

    [17]

    Gottschall T, Gràcia-Condal A, Fries M, Taubel A, Pfeuffer L, Mañosa L, Planes A, Skokov K P, Gutfleisch O 2018 Nature Mater. 17 929Google Scholar

    [18]

    Qiao K M, Cui Z, Hao X W, Zhao Q, Xu Y X, Wang D K, Liu J Y, Wang D D, Xia Y G, Yin W, Hao J Z, He L H, Romero-Muñiz C, Law J Y, Franco V, Ren Q Y, Zhang H 2025 Acta Mater. 297 121344Google Scholar

    [19]

    Li Y, Zeng Q Q, Wei Z Y, Liu E K, Han X L, Du Z W, Li L W, Xi X K, Wang W H, Wang S G, Wu G H 2019 Acta Mater. 174 289Google Scholar

    [20]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [21]

    Onuike B, Heer B, Bandyopadhyay A 2018 Addit. Manuf. 21 133

    [22]

    Wen Y J, Wu X K, Huang A K, Narayan R L, Wang P, Zhang L J, Zhang B C, Ramamurty U, Qu X H 2024 Acta Mater. 264 119572Google Scholar

    [23]

    Wen Y J, Zhang B C, Narayan R L, Wang P, Song X, Zhao H, Ramamurty U, Qu X H 2021 Addit. Manuf. 40 101926

    [24]

    Wen Y J, Gao Y, Narayan R L, Cai W, Wang P, Wei X D, Zhang B C, Ramamurty U, Qu X H 2025 Int. J. Plasticity 189 104342Google Scholar

    [25]

    Liu J, He C, Zhang M X, Yan A R 2016 Acta Mater. 118 44Google Scholar

    [26]

    Shao Y Y, Liu J, Zhang M X, Yan A R, Skokov K P, Karpenkov D Y, Gutfleisch O 2017 Acta Mater. 125 506Google Scholar

    [27]

    Sun Y, Lv W J, Liang Y, Gao Y, Cui W J, Yan Y J, Zhao W Y, Zhang Q J, Sang X H 2023 Scripta Mater. 223 115068Google Scholar

    [28]

    Krautz M, Skokov K, Gottschall T, Teixeira C S, Waske A, Liu J, Schultz L, Gutfleisch O 2014 J. Alloys Compd. 598 27Google Scholar

    [29]

    Eggert B, Lill J, Günzing D, Terwey A, Radulov I A, Wilhelm F, Rogalev A, Rovezzi M, Skokov K, Ollefs K, Gutfleisch O, Gruner M E, Wende H 2025 J. Alloys Compd. 1031 180586Google Scholar

    [30]

    Zhang X, Wang K, Huang K L, Yao Q R, Lu Z, Long Q X, Deng J Q, Wang J, Zhou H Y 2024 J. Magn. Magn. Mater. 607 172379Google Scholar

    [31]

    Miao L Y, Lu X, Wei Z Y, Zhang Y F, Zhang Y X, Liu J 2023 Acta Mater. 245 118635Google Scholar

    [32]

    Lovell E, Pereira A M, Caplin A D, Lyubina J, Cohen L F 2014 Adv. Energy Mater. 5 1401639Google Scholar

    [33]

    Lai J W, Sepehri-Amin H, Tang X, Li J, Matsushita Y, Ohkubo T, Saito A T, Hono K 2021 Acta Mater. 220 117286Google Scholar

    [34]

    Liu J, Krautz M, Skokov K, Woodcock T G, Gutfleisch O 2011 Acta Mater. 59 3602Google Scholar

    [35]

    杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚 2018 物理学报 67 077501Google Scholar

    Yang J J, Zhao J L, Xu L, Zhang H G, Yue M, Liu D M, Jiang Y J 2018 Acta Phys. Sin. 67 077501Google Scholar

  • [1] LIU Zhiyuan, MA Junjie, ZENG Zhaopeng, MA Ni, BA Qian, ZHANG Di, TAO Zhe, XIA Ailin. High-Performance n-type Bi2Te3-based thermoelectric materials with wide temperature range obtained through direct selenium doping. Acta Physica Sinica, 2026, 75(3): . doi: 10.7498/aps.75.20250853
    [2] FANG Jun, ZHAO Yanhong, GAO Xingyu, ZHANG Qili, WANG Yuechao, SUN Bo, LIU Haifeng, SONG Haifeng. A wide-range multiphase equation of state for lead. Acta Physica Sinica, 2025, 74(15): 156401. doi: 10.7498/aps.74.20250569
    [3] LI Guoxuan, FAN Hailong. Synergistic effect of rotation and strong shear flow on interface instability in laser additive manufacturing of dilute alloys. Acta Physica Sinica, 2025, 74(19): 196401. doi: 10.7498/aps.74.20250829
    [4] Li Rui, Shen Jun, Zhang Zhi-Peng, Li Zhen-Xing, Mo Zhao-Jun, Gao Xin-Qiang, Hai Peng, Fu Qi. Experimental study of compact room temperature magnetic cooling system based on different flow time ratios. Acta Physica Sinica, 2024, 73(3): 037501. doi: 10.7498/aps.73.20231066
    [5] Xiong Pei-Yu, Ni Zhuang, Lin Ze-Feng, Bai Xin-Bo, Liu Tian-Xiang, Zhang Xiang-Yu, Yuan Jie, Wang Xu, Shi Jing, Jin Kui. Composition-spread epitaxial ferroelectric thin films for temperature-insensitive functional devices. Acta Physica Sinica, 2023, 72(9): 097701. doi: 10.7498/aps.72.20230154
    [6] Li Ke, Wang Ya-Nan, Liu Ping, Yu Fang-Qiu, Dai Wei, Shen Jun. Experimental research on a 50 mK multi-stage adiabatic demagnetization refrigerator. Acta Physica Sinica, 2023, 72(19): 190702. doi: 10.7498/aps.72.20231102
    [7] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [8] Wang Chang, Li Ke, Shen Jun, Dai Wei, Wang Ya-Nan, Luo Er-Cang, Shen Bao-Gen, Zhou Yuan. Ultra-low temperature adiabatic demagnetization refrigerator for sub-Kelvin region. Acta Physica Sinica, 2021, 70(9): 090702. doi: 10.7498/aps.70.20202237
    [9] Su Wen-Xia, Lu Hai-Ming, Zeng Zi-Rui, Zhang Yi-Fei, Liu Jian, Xu Kun, Wang Dun-Hui, Du You-Wei. High-throughput computation on relationship between composition and magnetic phase transition temperature of LaFe11.5Si1.5-based magnetic refrigeration materials. Acta Physica Sinica, 2021, 70(20): 207501. doi: 10.7498/aps.70.20211085
    [10] Liu Guo-Qiang, Ke Ya-Jiao, Zhang Kong-Bin, He Xiong, Luo Feng, He Bin, Sun Zhi-Gang. Research progress of physical model of full-solid-state magnetic refrigeration system. Acta Physica Sinica, 2019, 68(21): 217501. doi: 10.7498/aps.68.20191139
    [11] Hou Zhi-Peng, Ding Bei, Li Hang, Xu Gui-Zhou, Wang Wen-Hong, Wu Guang-Heng. Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device. Acta Physica Sinica, 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [12] Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong. Progress of room temperature magnetic refrigeration technology. Acta Physica Sinica, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [13] Gao Xin-Qiang, Shen Jun, He Xiao-Nan, Tang Cheng-Chun, Dai Wei, Li Ke, Gong Mao-Qiong, Wu Jian-Feng. Numerical simulation of a hybrid magnetic refrigeration combined with high pressure Stirling regenerative refrigeration effect. Acta Physica Sinica, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [14] Chen Xiang, Chen Yun-Gui, Tang Yong-Bo, Xiao Ding-Quan, Li Dao-Hua. Basic problem in the first-order phase transition magnetic refrigeration material. Acta Physica Sinica, 2014, 63(14): 147502. doi: 10.7498/aps.63.147502
    [15] Shen Man-De, Ren Huan-Huan. Design of an infrared dual-band search and tracking system operating in widen temperature range. Acta Physica Sinica, 2013, 62(9): 090702. doi: 10.7498/aps.62.090702
    [16] Lu Dong, Jin Dong-Yue, Zhang Wan-Rong, Zhang Yu-Jie, Fu Qiang, Hu Rui-Xin, Gao Dong, Zhang Qing-Yuan, Huo Wen-Juan, Zhou Meng-Long, Shao Xiang-Peng. Novel microwave power sige heterojunction bipolar transistor with high thermal stability over a wide temperature range. Acta Physica Sinica, 2013, 62(10): 104401. doi: 10.7498/aps.62.104401
    [17] Wang Yong-Tian, Liu Zong-De, Yi Jun, Xue Zhi-Yong. The magnetocaloric effect of the Gd-based amorphous composite with Gd nanocrystals. Acta Physica Sinica, 2012, 61(5): 056102. doi: 10.7498/aps.61.056102
    [18] Qian Zhong-Hua, Feng Guo-Lin, Gong Zhi-Qiang. Distribution of most probable temperature of daily average temperature records in China and the slowing down of warming trend. Acta Physica Sinica, 2010, 59(10): 7498-7507. doi: 10.7498/aps.59.7498
    [19] YAO GUAN-HUA, XU ZHI-ZHAN, QU WEI-XING. POWER BROADENING OF PHOTOEMISSION SPECTRA IN STRONG FIELD AUTOIONIZATION. Acta Physica Sinica, 1990, 39(1): 30-34. doi: 10.7498/aps.39.30
    [20] WANG YONG-CHANG, E. JANNITTI, G. TONDELLO. SPECTROSCOPIC OBSERVATIONS ON THE LINE STARK BROADENING IN THE VACUUM ULTRAVIOLET IN LASER-PRODUCED PLASMAS. Acta Physica Sinica, 1985, 34(8): 1049-1055. doi: 10.7498/aps.34.1049
Metrics
  • Abstract views:  353
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2025
  • Accepted Date:  23 October 2025
  • Available Online:  01 November 2025
  • Published Online:  05 December 2025
  • /

    返回文章
    返回