Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Novel Algorithm in FDTD analysis of Target Containing ‘Infinitely Thin’ Graphene Sheet

WANG Fei WEI Bing LI Linqian

Citation:

A Novel Algorithm in FDTD analysis of Target Containing ‘Infinitely Thin’ Graphene Sheet

WANG Fei, WEI Bing, LI Linqian
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The finite - difference time - domain (FDTD) modeling of targets with infinitely thin graphene sheets poses a challenge due to the existence of surface current and the inability of longitudinal discretization. When analyzing the electromagnetic properties of targets via FDTD method, spatial discretization of the target is essential. In the case of macroscopic electromagnetic targets that incorporate ‘infinitely thin’ graphene interfaces, this interface cannot be longitudinally partitioned. Moreover, a surface current exists on the interface, rendering the conventional calculation methods for the tangential electric field on the interface inapplicable. To address this issue, we put forward a novel Equivalent Source Current (ESC) approach. The proposed method enables the graphene sheet to retain a two - dimensional structure and be positioned on the surface of the Yee cell during the spatial discretization of the FDTD method(Fig.2). Subsequently, the surface current on the graphene sheet is approximated as a source volume current. Then, the active Maxwell's equations are discretized at the tangential electric - field nodes on the graphene surface(Fig.2, Fig.3), thereby obtaining a modified formula for the electric - field. By introducing intermediate variables and integrating the Shift Operator (SO) method, which is employed to handle issues related to dispersive media, to process the correction formula, an FDTD iterative formula for calculating the tangential electric field at the graphene interface is deduced. This ultimately enables the FDTD calculations for targets with ‘infinitely thin’ graphene sheets. Excellent agreement between our FDTD results and analytical solutions in several numerical examples validates the proposed method. The methodological framework proposed in this study can be generalized and applied to the ‘zero-thickness’ dispersive interfaces with surface current distributions (such as metallic films and two-dimensional transition metal sulfides). This allows for a convenient numerical analysis of the electromagnetic properties of structures incorporating conductive dispersive interfaces.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q, Hou H L 2025 Acta Phys. Sin. 74 067801 (in Chinese)[成昱轩, 许辉, 于鸿飞, 黄林琴, 谷志超, 陈玉峰, 贺龙辉, 陈智全, 侯海良 2025 物理学报 74 067801]

    [4]

    Liu J T, Huang J H, Xiao W B, Hu A R, Wang J H 2012 Acta Phys. Sin. 61 177202 (in Chinese) [刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉 2012 物理学报 61 177202]

    [5]

    Liang S J, Sun S, Ang L K 2013 Carbon 61 294

    [6]

    Song Y, Wu H C 2013 J. Phys.: Condens. Matter 25 355301

    [7]

    Eric S M, Luis E F F T 2012 Phys. Rev. B 86 125449

    [8]

    Hu S N, Li D Q, Zhan J, Gao E D, Wang Q, Liu N L, Nie G Z 2025 Acta Phys. Sin. 74 097801 (in Chinese)[胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政 2025 物理学报 74 097801]

    [9]

    Kim H, Kim Y D, Wu T, Cao Q, Herman I P, Hone J, Guo J, Shepard K L 2022 Sci. Adv. 8 eabj1742

    [10]

    Sensale-Rodriguez B, Yan R, Kelly M 2012 Nature Commun. 3 780

    [11]

    Limosani F, Tessore F, Forni A, Lembo A, Di Carlo G, Albanese C, Bellucci S, Tagliatesta P 2023 Materials 16 5427

    [12]

    Fu M X, Zhang Y 2013 Journal of electronic science and technology 11 352

    [13]

    Rodriguez B S, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Communications 3 780

    [14]

    Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304

    [15]

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803 (in Chinese)[张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 物理学报 61 047803]

    [16]

    Lovat G 2012 IEEE Transactions on electromagnetic compatibility 54 101

    [17]

    Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi’an: Xidian University Press) p13 (in Chinese) [葛德彪, 闫玉波2011 电磁波时域有限差分法(第三版) (西安: 西安电子科技大学出版社) 第13 页]

    [18]

    Ge D B, Wu Y L, Zhu X Q 2003 Chin. J. Radio Sci. 18 359 (in Chinese) [葛德彪, 吴跃丽, 朱湘琴 2003 电波科学学报 18 359]

    [19]

    Wei B, Ge D B, Wang F 2008 Acta Phys. Sin. 57 6290(in Chinese) [魏兵, 葛德彪, 王飞 2008 物理学报 57 6290]

    [20]

    Wang F, Ge D B, Wei B 2009 Acta Phys. Sin. 58 6356(in Chinese) [魏兵, 葛德彪, 王飞 2009 物理学报 58 6356]

    [21]

    Li L Q, Shi Y X, Wang F, Wei B 2012 Acta Phys. Sin. 61 125201(in Chinese) [李林茜, 石雁祥, 王飞, 魏兵 2008 物理学报 61 125201]

    [22]

    Wang F, Wei B Acta Phys. Sin. 2019, 68 244101(in Chinese) [王飞, 魏兵 2019 物理学报 68 244101]

    [23]

    Giampiero L, Rodolfo A 2015 IEEE Transactions on nanotechnology 14 681

    [24]

    Zhuang W Z, Li R X, Liang J R, Jia Y J 2021 Applied Optics 60 1903

  • [1] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.71.20211613
    [2] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, doi: 10.7498/aps.71.20212203
    [3] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Zhang Ting-Ting, Liu Yang, Hu Zhen-Yang, Tang Xiao-Jie. Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Acta Physica Sinica, doi: 10.7498/aps.70.20201095
    [4] Li Liang-Liang, Meng Fan-Wei, Zou Kun, Huang Yao, Peng Yi-Tian. Friction properties of suspended graphene. Acta Physica Sinica, doi: 10.7498/aps.70.20201796
    [5] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, doi: 10.7498/aps.69.20191645
    [6] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, doi: 10.7498/aps.68.20190279
    [7] Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He. Research progress of graphene radio frequency devices. Acta Physica Sinica, doi: 10.7498/aps.66.218502
    [8] Qin Zhi-Hui. Recent progress of graphene-like germanene. Acta Physica Sinica, doi: 10.7498/aps.66.216802
    [9] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, doi: 10.7498/aps.64.237801
    [10] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, doi: 10.7498/aps.64.077305
    [11] Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan. Study on thermal characteristics of phonons in graphene. Acta Physica Sinica, doi: 10.7498/aps.63.154704
    [12] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, doi: 10.7498/aps.63.057803
    [13] Zhang Xue-Qin, Wang Jun-Hong, Li Zheng. Time-domain scattering properties of microstrip array antennas. Acta Physica Sinica, doi: 10.7498/aps.60.051301
    [14] Zhao Dong-Mei, Shi Yu-Lei, Zhou Qing-Li, Li Lei, Sun Hui-Juan, Zhang Cun-Lin. Direct fabrication of terahertz dual-band resonator. Acta Physica Sinica, doi: 10.7498/aps.60.093301
    [15] Li Lei, Zhou Qing-Li, Shi Yu-Lei, Zhao Dong-Mei, Zhang Cun-Lin, Zhao Kun, Tian Lu, Zhao Hui, Bao Ri-Ma, Zhao Song-Qing. The influence of different opening shapes of split-ring resonator on its transmittance in terahertz band. Acta Physica Sinica, doi: 10.7498/aps.60.019503
    [16] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, doi: 10.7498/aps.59.3408
    [17] Liu Hai-Liang, Zhang Tong-Yi, Zhu Shao-Lan, Fan Wen-Hui. Spatiotemporal shaping and filtering of terahertz pulses through metal slits with finite thickness. Acta Physica Sinica, doi: 10.7498/aps.58.3658
    [18] Wang Fei, Ge De-Biao, Wei Bing. SO-FDTD analysis of EM scattering of magnetized ferrite. Acta Physica Sinica, doi: 10.7498/aps.58.6356
    [19] Yang Guang-Jie, Kong Fan-Min, Li Kang, Mei Liang-Mo. Several methods for dealing with metal in FDTD. Acta Physica Sinica, doi: 10.7498/aps.56.4252
    [20] Bai Ning-Feng, Liu Xu, Xiao Jin-Biao, Zhang Ming-De, Sun Xiao-Han. Efficient coupling from dielectric rib waveguide to two-dimensional photonic crystal waveguide. Acta Physica Sinica, doi: 10.7498/aps.54.4933
Metrics
  • Abstract views:  46
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  15 November 2025
  • /

    返回文章
    返回