Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of graphene radio frequency devices

Lu Qi Lyu Hong-Ming Wu Xiao-Ming Wu Hua-Qiang Qian He

Citation:

Research progress of graphene radio frequency devices

Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene, the first realized two-dimensional material, has received much attention in electronic applications in recent years. With ultra-high carrier mobility and one atom thick structure, graphene becomes a promising semiconductor candidate for solving the problem of short channel effect in nanoscale metal-oxide-semiconductor field-effect transistor (MOSFET), and exploring its applications in radio frequency devices. How to develop the advantages of graphene transistor in radio frequency is an attractive research area. The first step is to obtain high quality graphene material. In this article we summarize the graphene growth methods commonly used in electronic field, including chemical vapor deposition on metal substrates and epitaxial method on wide bandgap semiconductor and insulator substrates. Another key factor to improve graphene transistor performance is to carefully design the device structure and process flow. Multi-finger gate and T-shaped gate are widely used in MOSFET. These two structures can significantly reduce gate resistance, and result in a better radio frequency performance. Inverted process is introduced for graphene FET fabrication, which is compatible with silicon-based back-end-of-line technology. It can reduce the damages to graphene during fabrication. Another improved self-aligned gate deposition process can lead to a good gate coupling and less parasitic parameters. These newly developed process play a prominent part in increasing the cut-off frequency and maximum oscillation frequency of graphene radio frequency devices. In addition, single crystal graphene is helpful in eliminating carriers scattering and improving the radio frequency properties of graphene transistor. So far, the highest cut-off frequency of graphene transistor reaches over 300 GHz by a few groups, but the maximum oscillation frequency remains low. Record-high maximum oscillation frequency is 200 GHz when gate length is 60 nm. Further improvement of maximum oscillation frequency needs to be tried out. Several graphene radio frequency circuits are also discussed in the paper. Some of the circuits have similar structures to silicon-based circuits, and others are designed based on the unique property of graphene transistor, like ambipolar transport properties. The new concept circuits have simpler structures than conventional circuits. With the rapid development of graphene growth and related integrating technology, the potential to use graphene in radio frequency field will be further increased.
      Corresponding author: Qian He, qianh@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01604), the National Natural Science Foundation of China (Grant Nos. 61377106, 61474072), and the Natural Science Foundation of Beijing, China (Grant No. 4162031).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2009 Nat. Mater. 6 183

    [3]

    Schwierz F 2007 Nat. Nanotechnol. 5 487

    [4]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [5]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gunko Y, Boland J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A, Coleman J 2008 Nat. Nanotechnol. 3 563

    [6]

    Schniepp H C, Li J L, Mcallister M J, Sai H, Herrera-Alonso M, Adamson D H, Prudhomme R, Car R, Saville D, Aksay I 2006 J. Phys. Chem. B 110 8535

    [7]

    Segal M 2009 Nat. Nanotechnol. 4 612

    [8]

    Forti S, Emtsev K V, Coletti C, Zakharov A A, Riedl C, Starke U 2008 Phys. Rev. B 78 245403

    [9]

    Forbeaux I, Themlin J M, Debever J M 1998 Phys. Rev. B 58 16396

    [10]

    Yu C, Li J, Liu Q B, Cai S J, Feng Z H 2014 Acta Phys. Sin. 63 038102 (in Chinese) [蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红 2014 物理学报 63 038102]

    [11]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Riner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312

    [12]

    Bae S, Kim H, Lee Y, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H, Song Y, Kim Y, Kim K, Kim K, Ozyilmaz B, Ahn J, Hong B, Iijima S 2010 Nat. Nanotechnol. 5 574

    [13]

    Xiao K, Wu H, L H, Wu X, Qian H 2013 Nanoscale 5 5524

    [14]

    Novoselov K S, Fal V I, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [15]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W 2012 J. Am. Chem. Soc. 134 3627

    [16]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699

    [17]

    Gan L, Luo Z 2013 ACS Nano 7 9480

    [18]

    Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M 2013 Adv. Functional Mater. 23 198

    [19]

    Chen S, Ji H, Chou H, Li Q, Li H, Suk J W, Piner R, Liao L, Cai W, Rouff R 2013 Adv. Mater. 25 2062

    [20]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43

    [21]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930

    [22]

    Yu C, Liu Q, Li J, Lu W, He Z, Cai S, Feng Z 2014 Appl. Phys. Lett. 105 183105

    [23]

    Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z 2014 J. Am. Chem. Soc. 136 6574

    [24]

    Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi M, Ma D, Song X, Wu X, Xiong C, Rummeli M, Ding F, Zhang Y, Liu Z 2015 Adv. Mater. 27 7839

    [25]

    Cai T, Jia Z, Yan B, Yu D, Wu X 2015 Appl. Phys. Lett. 106 013106

    [26]

    Ding X, Ding G, Xie X, Huang F, Jiang M 2011 Carbon 49 2522

    [27]

    Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M 2012 Carbon 50 329

    [28]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519

    [29]

    Gao T, Song X, Du H, Nie Y, Chen Y, Ji Q, Sun J, Yang Y, Zhang Y, Liu Z 2015 Nat. Commun. 6 6835

    [30]

    Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J 2014 J. Mater. Chem. C 2 201

    [31]

    Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Chen H, Ren W 2017 Nat. Commun. 8 14560

    [32]

    Yun W, Zou X, Sun M, Cao Z, Wang X, Shuai H, Zhou J, Ynag Y, Yu X, Kong Y, Yu G, Liao L, Chen T 2016 ACS Appl. Mater. Interfaces 8 25645

    [33]

    Lu N D, Wang L F, Li L, Liu M 2017 Chin. Phys. B 26 036804

    [34]

    Zheng J, Lu W, Ruge Q, Liu Q, Hong L, Yu D, Mei W, Shi J, Gao Z, Lu J 2013 Sci. Rep. 3 1314

    [35]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L 2008 Nat. Nanotech. 3 653

    [36]

    Wang H, Hus A, Kong J, Antoniadis D A, Palacios T 2011 IEEE Trans. Electron Dev. 58 1523

    [37]

    Frgonese S, Magallo M, Maneux C, Happy H, Zimmer T 2013 IEEE Trans. Nanotech. 12 539

    [38]

    Zhu W N, Linghu C, Zhang J, Zhang L, Yu Z 2012 SISPAD Denver, CO, USA September 5-7, 2012 pp79-82

    [39]

    Scott B W, Leburton J P 2011 IEEE Trans. Nanotech. 10 1113

    [40]

    Zhu R, Zhang Y, Luo J, Chang S, Wang H, Huang Q, He J 2015 Key Eng. Mater. 645-646 139

    [41]

    L H, Lu Q, Huang Y, Ma T, Zhang J, Wu X, Yu Z, Ren W, Cheng H, Wu H, Qian H 2015 Sci. Rep. 5 17649

    [42]

    Han S J, Oida S, Jenkins K A, Lu D, Zhu Y 2013 IEEE Electron Dev. Lett. 34 1340

    [43]

    Han S J, Jenkins K A, Valdes G A, Franklin A D, Bol A A, Haensch W 2011 Nano Lett. 11 3690

    [44]

    Peng S, Jin Z, Zhang D, Shi J, Wang X, Wang S, Li M, Liu X, Yu G 2015 Appl. Phys. Lett. 106 033503

    [45]

    Feng Z H, Yu C, Li J, Liu Q B, He Z Z, Song X B, Wang J, Cai S 2014 Carbon 75 249

    [46]

    Wu Y, Ma Z F, Du L, Zhang P, He L 2015 Mater. Sci. Forum 815 36

    [47]

    Han S J, Valdes-Garcia A, Bol A A, Franklin A D 2011 IEEE Electron Dev. Meeting 326 pp.2.2.1-2.2.4

    [48]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [49]

    L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826

    [50]

    Lyu H, Qi L, Liu J, Wu X, Zhang J, Li J, Niu J, Yu Z, Wu H, Qian H 2016 Sci. Rep. 6 35717

    [51]

    Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G, Feng Z H 2014 Chin. Phys. Lett. 31 078104

    [52]

    Wei Z J, Fu Y Y, Liu J B, Wang Z D, Jia Y H, Guo J, Ren L M, Chen Y F, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201

    [53]

    Yu C, He Z Z, Li J, Song X B, Liu Q B, Cai S J, Feng Z 2016 Appl. Phys. Lett. 108 013102

    [54]

    He Z Z, Yang K W, Yu C, Liu Q B, Wang J J, Song X B, Han T T, Feng Z H, Cai S J 2016 Chin. Phys. Lett. 33 086801

    [55]

    Wu Y, Jenkins K A, Valdesgarcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P, Lin Y 2012 Nano Lett. 12 3062

    [56]

    Islam M R, Haque M A, Fahim-Al-Fattah M, Alam M N K, Islam M R 2016 International Conference on Informatics, Electronics and Vision Dhaka, Bangladesh, May 13-14, 2016 pp21-25

    [57]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195

    [58]

    Smith J T, Franklin A D, Farmer D B, Dimitrakopoulos C D 2013 ACS Nano 7 3661

    [59]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D, Guo J, Kim P, Hone J, Shepard K, Dean C 2013 Science 342 614

    [60]

    Song S M, Kim T Y, Jae Sul O, Cheol Shin W 2014 Appl. Phys. Lett. 104 183506

    [61]

    Kwon T, An H, Seo Y S, Jung J 2012 Jpn. J. Appl. Phys. 51 638

    [62]

    Gahng S, Chang H R, Yu J C, Kim J A, Kim T, Yoo W J 2014 Appl. Phys. Lett. 104 223110

    [63]

    Robinson J A, Labella M, Zhu M, Hollander M 2011 Appl. Phys. Lett. 98 053103

    [64]

    Wei S L, Chang T N, Thong J T L 2014 Nano Lett. 14 3840

    [65]

    Li W, Liang Y, Yu D, Peng L 2013 Appl. Phys. Lett. 102 183110

    [66]

    Li W, Hacker C A, Cheng G, Liang Y 2014 J. Appl. Phys. 115 487

    [67]

    Liang Y, Liang X, Zhang Z, Li W, Huo X, Peng L 2015 Nanoscale 7 10954

    [68]

    Cheng R, Bai J, Liao L, Zhou H, Chen Y, Liu L, Lin Y, Jiang S, Huang Y, Duan X 2012 Proc. Natl. Acad. Sci. USA 109 11588

    [69]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K, Huang Y, Duan X 2010 Nature 467 305

    [70]

    Lin Y M, Jenkins K A, Valdesgarcia A, Small J P, Farmer D B, Avouris P 2009 Nano Lett. 9 422

    [71]

    Meric I, Baklitskaya N, Kim P, Shepard K L 2008 IEEE Int. Electron Dev. Meeting San Francisco, CA, USA, December 15-17, 2008 pp1-4

    [72]

    Meric I, Dean C R, Han S J, Wang L 2011 Electron Devices Meeting Washington, DC, USA, December 5-7, 2011 pp2.1.1-2.1.4

    [73]

    Dimitrakopoulos C, Lin Y M, Grill A, Farmer D B 2010 J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. 28 985

    [74]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [75]

    Guo Z, Dong R, Chakraborty P S, Lourenco N, Palmer J, Hu Y, Ruan M, Hankinson J, Kunc J, Cressler J, Berger C, Heer W 2013 Nano Lett. 13 942

    [76]

    Badmaev A, Che Y, Li Z, Wang C, Zhou C 2012 ACS Nano 6 3371

    [77]

    Han S J, Garcia A V, Oida S, Jenkins K A 2013 IEEE Int. Electron Dev. Meeting Washington, DC, USA, December 9-11, 2013 pp19.9.1-19.9.3

    [78]

    Wu Y, Lin Y, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

    [79]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [80]

    Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906

    [81]

    Lyu H, Wu H, Liu J, Lu Q, Zhang J, Wu X, Li J, Ma T, Niu J, Ren W, Cheng H, Yu Z, Qian H 2015 Nano Lett. 15 6677

    [82]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [83]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M 2008 Nat. Mater. 7 151

    [84]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K 2008 Nat. Nanotechnol. 3 654

    [85]

    Meric I, Dean C R, Young A F, Baklitskaya N, Tremblay N, Nuckolls C, Kim P, Shepard K 2011 Nano Lett. 11 1093

    [86]

    Dorgan V E, Bae M H, Pop E 2010 Appl. Phys. Lett. 97 082112

    [87]

    Pozar D M 1990 Microwave Engineering (MA: Addison-Wesley)

    [88]

    Yu C, He Z Z, Liu Q B, Song X B, Xu P, Han T T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684

    [89]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074

    [90]

    Yu W C, Chen X F, Hu X B, Xu X G 2016 J. Synthetic Crystals 45 1 (in Chinese) [郁万成, 陈秀芳, 胡小波, 徐现刚 2016 人工晶体学报 45 1]

    [91]

    Chen X, Wu B, Liu Y 2016 Chem. Soc. Rev. 45 2057

    [92]

    Li G, Zhou H, Pan L, Zhang Y, Huang L, Xu W, Du S, Ouyang M, Ferrari A, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [93]

    Leong W S, Gong H, Thong J T 2014 ACS Nano 8 994

    [94]

    Park H Y, Jung W S, Kang D H, Jeon J, Yoo G, Park Y, Lee J, Jang Y H, Lee J, Park S, Yu H, Shin B, Lee S, Park J 2016 Adv. Mater. 28 864

    [95]

    Cheng C, Huang B, Liu J, Zhang Z 2016 IEEE Electron Dev. Lett. 37 1

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2009 Nat. Mater. 6 183

    [3]

    Schwierz F 2007 Nat. Nanotechnol. 5 487

    [4]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [5]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gunko Y, Boland J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A, Coleman J 2008 Nat. Nanotechnol. 3 563

    [6]

    Schniepp H C, Li J L, Mcallister M J, Sai H, Herrera-Alonso M, Adamson D H, Prudhomme R, Car R, Saville D, Aksay I 2006 J. Phys. Chem. B 110 8535

    [7]

    Segal M 2009 Nat. Nanotechnol. 4 612

    [8]

    Forti S, Emtsev K V, Coletti C, Zakharov A A, Riedl C, Starke U 2008 Phys. Rev. B 78 245403

    [9]

    Forbeaux I, Themlin J M, Debever J M 1998 Phys. Rev. B 58 16396

    [10]

    Yu C, Li J, Liu Q B, Cai S J, Feng Z H 2014 Acta Phys. Sin. 63 038102 (in Chinese) [蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红 2014 物理学报 63 038102]

    [11]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Riner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312

    [12]

    Bae S, Kim H, Lee Y, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H, Song Y, Kim Y, Kim K, Kim K, Ozyilmaz B, Ahn J, Hong B, Iijima S 2010 Nat. Nanotechnol. 5 574

    [13]

    Xiao K, Wu H, L H, Wu X, Qian H 2013 Nanoscale 5 5524

    [14]

    Novoselov K S, Fal V I, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [15]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W 2012 J. Am. Chem. Soc. 134 3627

    [16]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699

    [17]

    Gan L, Luo Z 2013 ACS Nano 7 9480

    [18]

    Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M 2013 Adv. Functional Mater. 23 198

    [19]

    Chen S, Ji H, Chou H, Li Q, Li H, Suk J W, Piner R, Liao L, Cai W, Rouff R 2013 Adv. Mater. 25 2062

    [20]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43

    [21]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930

    [22]

    Yu C, Liu Q, Li J, Lu W, He Z, Cai S, Feng Z 2014 Appl. Phys. Lett. 105 183105

    [23]

    Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z 2014 J. Am. Chem. Soc. 136 6574

    [24]

    Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi M, Ma D, Song X, Wu X, Xiong C, Rummeli M, Ding F, Zhang Y, Liu Z 2015 Adv. Mater. 27 7839

    [25]

    Cai T, Jia Z, Yan B, Yu D, Wu X 2015 Appl. Phys. Lett. 106 013106

    [26]

    Ding X, Ding G, Xie X, Huang F, Jiang M 2011 Carbon 49 2522

    [27]

    Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M 2012 Carbon 50 329

    [28]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519

    [29]

    Gao T, Song X, Du H, Nie Y, Chen Y, Ji Q, Sun J, Yang Y, Zhang Y, Liu Z 2015 Nat. Commun. 6 6835

    [30]

    Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J 2014 J. Mater. Chem. C 2 201

    [31]

    Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Chen H, Ren W 2017 Nat. Commun. 8 14560

    [32]

    Yun W, Zou X, Sun M, Cao Z, Wang X, Shuai H, Zhou J, Ynag Y, Yu X, Kong Y, Yu G, Liao L, Chen T 2016 ACS Appl. Mater. Interfaces 8 25645

    [33]

    Lu N D, Wang L F, Li L, Liu M 2017 Chin. Phys. B 26 036804

    [34]

    Zheng J, Lu W, Ruge Q, Liu Q, Hong L, Yu D, Mei W, Shi J, Gao Z, Lu J 2013 Sci. Rep. 3 1314

    [35]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L 2008 Nat. Nanotech. 3 653

    [36]

    Wang H, Hus A, Kong J, Antoniadis D A, Palacios T 2011 IEEE Trans. Electron Dev. 58 1523

    [37]

    Frgonese S, Magallo M, Maneux C, Happy H, Zimmer T 2013 IEEE Trans. Nanotech. 12 539

    [38]

    Zhu W N, Linghu C, Zhang J, Zhang L, Yu Z 2012 SISPAD Denver, CO, USA September 5-7, 2012 pp79-82

    [39]

    Scott B W, Leburton J P 2011 IEEE Trans. Nanotech. 10 1113

    [40]

    Zhu R, Zhang Y, Luo J, Chang S, Wang H, Huang Q, He J 2015 Key Eng. Mater. 645-646 139

    [41]

    L H, Lu Q, Huang Y, Ma T, Zhang J, Wu X, Yu Z, Ren W, Cheng H, Wu H, Qian H 2015 Sci. Rep. 5 17649

    [42]

    Han S J, Oida S, Jenkins K A, Lu D, Zhu Y 2013 IEEE Electron Dev. Lett. 34 1340

    [43]

    Han S J, Jenkins K A, Valdes G A, Franklin A D, Bol A A, Haensch W 2011 Nano Lett. 11 3690

    [44]

    Peng S, Jin Z, Zhang D, Shi J, Wang X, Wang S, Li M, Liu X, Yu G 2015 Appl. Phys. Lett. 106 033503

    [45]

    Feng Z H, Yu C, Li J, Liu Q B, He Z Z, Song X B, Wang J, Cai S 2014 Carbon 75 249

    [46]

    Wu Y, Ma Z F, Du L, Zhang P, He L 2015 Mater. Sci. Forum 815 36

    [47]

    Han S J, Valdes-Garcia A, Bol A A, Franklin A D 2011 IEEE Electron Dev. Meeting 326 pp.2.2.1-2.2.4

    [48]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [49]

    L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826

    [50]

    Lyu H, Qi L, Liu J, Wu X, Zhang J, Li J, Niu J, Yu Z, Wu H, Qian H 2016 Sci. Rep. 6 35717

    [51]

    Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G, Feng Z H 2014 Chin. Phys. Lett. 31 078104

    [52]

    Wei Z J, Fu Y Y, Liu J B, Wang Z D, Jia Y H, Guo J, Ren L M, Chen Y F, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201

    [53]

    Yu C, He Z Z, Li J, Song X B, Liu Q B, Cai S J, Feng Z 2016 Appl. Phys. Lett. 108 013102

    [54]

    He Z Z, Yang K W, Yu C, Liu Q B, Wang J J, Song X B, Han T T, Feng Z H, Cai S J 2016 Chin. Phys. Lett. 33 086801

    [55]

    Wu Y, Jenkins K A, Valdesgarcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P, Lin Y 2012 Nano Lett. 12 3062

    [56]

    Islam M R, Haque M A, Fahim-Al-Fattah M, Alam M N K, Islam M R 2016 International Conference on Informatics, Electronics and Vision Dhaka, Bangladesh, May 13-14, 2016 pp21-25

    [57]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195

    [58]

    Smith J T, Franklin A D, Farmer D B, Dimitrakopoulos C D 2013 ACS Nano 7 3661

    [59]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D, Guo J, Kim P, Hone J, Shepard K, Dean C 2013 Science 342 614

    [60]

    Song S M, Kim T Y, Jae Sul O, Cheol Shin W 2014 Appl. Phys. Lett. 104 183506

    [61]

    Kwon T, An H, Seo Y S, Jung J 2012 Jpn. J. Appl. Phys. 51 638

    [62]

    Gahng S, Chang H R, Yu J C, Kim J A, Kim T, Yoo W J 2014 Appl. Phys. Lett. 104 223110

    [63]

    Robinson J A, Labella M, Zhu M, Hollander M 2011 Appl. Phys. Lett. 98 053103

    [64]

    Wei S L, Chang T N, Thong J T L 2014 Nano Lett. 14 3840

    [65]

    Li W, Liang Y, Yu D, Peng L 2013 Appl. Phys. Lett. 102 183110

    [66]

    Li W, Hacker C A, Cheng G, Liang Y 2014 J. Appl. Phys. 115 487

    [67]

    Liang Y, Liang X, Zhang Z, Li W, Huo X, Peng L 2015 Nanoscale 7 10954

    [68]

    Cheng R, Bai J, Liao L, Zhou H, Chen Y, Liu L, Lin Y, Jiang S, Huang Y, Duan X 2012 Proc. Natl. Acad. Sci. USA 109 11588

    [69]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K, Huang Y, Duan X 2010 Nature 467 305

    [70]

    Lin Y M, Jenkins K A, Valdesgarcia A, Small J P, Farmer D B, Avouris P 2009 Nano Lett. 9 422

    [71]

    Meric I, Baklitskaya N, Kim P, Shepard K L 2008 IEEE Int. Electron Dev. Meeting San Francisco, CA, USA, December 15-17, 2008 pp1-4

    [72]

    Meric I, Dean C R, Han S J, Wang L 2011 Electron Devices Meeting Washington, DC, USA, December 5-7, 2011 pp2.1.1-2.1.4

    [73]

    Dimitrakopoulos C, Lin Y M, Grill A, Farmer D B 2010 J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. 28 985

    [74]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [75]

    Guo Z, Dong R, Chakraborty P S, Lourenco N, Palmer J, Hu Y, Ruan M, Hankinson J, Kunc J, Cressler J, Berger C, Heer W 2013 Nano Lett. 13 942

    [76]

    Badmaev A, Che Y, Li Z, Wang C, Zhou C 2012 ACS Nano 6 3371

    [77]

    Han S J, Garcia A V, Oida S, Jenkins K A 2013 IEEE Int. Electron Dev. Meeting Washington, DC, USA, December 9-11, 2013 pp19.9.1-19.9.3

    [78]

    Wu Y, Lin Y, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

    [79]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [80]

    Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906

    [81]

    Lyu H, Wu H, Liu J, Lu Q, Zhang J, Wu X, Li J, Ma T, Niu J, Ren W, Cheng H, Yu Z, Qian H 2015 Nano Lett. 15 6677

    [82]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [83]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M 2008 Nat. Mater. 7 151

    [84]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K 2008 Nat. Nanotechnol. 3 654

    [85]

    Meric I, Dean C R, Young A F, Baklitskaya N, Tremblay N, Nuckolls C, Kim P, Shepard K 2011 Nano Lett. 11 1093

    [86]

    Dorgan V E, Bae M H, Pop E 2010 Appl. Phys. Lett. 97 082112

    [87]

    Pozar D M 1990 Microwave Engineering (MA: Addison-Wesley)

    [88]

    Yu C, He Z Z, Liu Q B, Song X B, Xu P, Han T T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684

    [89]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074

    [90]

    Yu W C, Chen X F, Hu X B, Xu X G 2016 J. Synthetic Crystals 45 1 (in Chinese) [郁万成, 陈秀芳, 胡小波, 徐现刚 2016 人工晶体学报 45 1]

    [91]

    Chen X, Wu B, Liu Y 2016 Chem. Soc. Rev. 45 2057

    [92]

    Li G, Zhou H, Pan L, Zhang Y, Huang L, Xu W, Du S, Ouyang M, Ferrari A, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [93]

    Leong W S, Gong H, Thong J T 2014 ACS Nano 8 994

    [94]

    Park H Y, Jung W S, Kang D H, Jeon J, Yoo G, Park Y, Lee J, Jang Y H, Lee J, Park S, Yu H, Shin B, Lee S, Park J 2016 Adv. Mater. 28 864

    [95]

    Cheng C, Huang B, Liu J, Zhang Z 2016 IEEE Electron Dev. Lett. 37 1

  • [1] Liu Ying, Guo Si-Lin, Zhang Yong, Yang Peng, Lyu Ke-Hong, Qiu Jing, Liu Guan-Jun. Review on 1/f noise and its research progress in two-dimensional material graphene. Acta Physica Sinica, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [2] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Zhang Ting-Ting, Liu Yang, Hu Zhen-Yang, Tang Xiao-Jie. Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Acta Physica Sinica, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [4] Dong Hui-Ying, Qin Xiao-Ru, Xue Wen-Rui, Cheng Xin, Li Ning, Li Chang-Yong. Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide. Acta Physica Sinica, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [5] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [7] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [8] Yu Hai-Ling, Zhu Jia-Qi, Cao Wen-Xin, Han Jie-Cai. Process in preparation of metal-catalyzed graphene. Acta Physica Sinica, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [9] Zhang Yu-Ping, Liu Ling-Yu, Chen Qi, Feng Zhi-Hong, Wang Jun-Long, Zhang Xiao, Zhang Hong-Yan, Zhang Hui-Yun. Effect of cooling of electron-hole plasma in electrically pumped graphene layer structures with split gates. Acta Physica Sinica, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [10] Chen Gao, Yang Yu-Jun, Guo Fu-Ming. Analysis on the cutoff frequency of high order harmonic generation in the crystal. Acta Physica Sinica, 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [11] Xu Yue-Hang, Guo Yun-Chuan, Wu Yun-Qiu, Xu Rui-Min, Yan Bo. Electrical read out of nano-electromechanical system signal by using graphene resonant channel transistor. Acta Physica Sinica, 2012, 61(1): 010701. doi: 10.7498/aps.61.010701
    [12] Liu Jiang-Tao, Huang Jie-Hui, Xiao Wen-Bo, Hu Ai-Rong, Wang Jian-Hui. The influence of gate voltage on electron transport in the graphene field-effect transistor under strong laser field. Acta Physica Sinica, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [13] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [14] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [15] Zou Xiu, Zou Bin-Yan, Liu Hui-Ping. Effect of external magnetic field on ion energy density of collisional radio-frequency sheath. Acta Physica Sinica, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [16] Zhang Jun-Yan, Deng Tian-Song, Shen Xin, Zhu Kong-Tao, Zhang Qi-Feng, Wu Jin-Lei. Electrical and optical properties of single As-doped ZnO nanowire field effect transistors. Acta Physica Sinica, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [17] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [18] Zhao Guo-Wei, Wang Zhi-Jiang, Xu Yue-Min, Liang Zhi-Wei, Xu Jie. Numerical simulation of plasma nonlinear phenomena excited by radio-frequency wave using FDTD method. Acta Physica Sinica, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [19] Zou Xiu. Structure of radio-frequency flat plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [20] Qiu Liang, Meng Yue-Dong, Ren Zhao-Xing, Zhong Shao-Feng. A new atmospheric RF cold plasma source with microhollow cathode structure. Acta Physica Sinica, 2006, 55(11): 5872-5877. doi: 10.7498/aps.55.5872
Metrics
  • Abstract views:  7679
  • PDF Downloads:  545
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2017
  • Accepted Date:  04 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回