Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the Mechanism of GaN HEMT Interface Engineering in Enhancing High-Temperature and Dynamic Bias Reliability

WAN Ziyan ZHANG Haoran LI Xiao NING Jing HAO Yue ZHANG Jincheng

Citation:

Research on the Mechanism of GaN HEMT Interface Engineering in Enhancing High-Temperature and Dynamic Bias Reliability

WAN Ziyan, ZHANG Haoran, LI Xiao, NING Jing, HAO Yue, ZHANG Jincheng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Traditional GaN materials inevitably exhibit lattice mismatch and differing thermal expansion coefficients during epitaxial growth, which often leads to a sharp increase in dislocation density and interface defects. This results in severe current collapse, degraded high-frequency performance, and reliability degradation in GaN HEMT devices, representing one of the key bottlenecks facing GaN-based HEMT RF devices. Van der Waals epitaxial bonding between BN and GaN effectively suppresses dislocations and relieves material stress, playing a crucial role in enhancing the high-frequency performance and reliability of GaN HEMT devices. This paper fabricates AlGaN/GaN HEMT devices grown on BN buffer layers using van der Waals epitaxy. Test results indicate that compared to conventional devices without a BN buffer layer, not only has the on-resistance been reduced by 40% and the peak transconductance increased by 54%, but the maximum output current has also been boosted by 67%. Under strong negative gate voltage stress conditions, its performance significantly outperforms conventional devices, with a current collapse ratio of only 9.2%. During the pulse width reduction from 200 ms to 100 μs, only a minimal drift of approximately 0.09 V occurs. Under high-temperature conditions (125°C), the current collapse ratio is only 31%, with smaller reductions in transconductance and negative drift of Vth. The overall degradation is significantly lower than that of conventional AlGaN/GaN HEMT devices based on epitaxial systems, demonstrating excellent high-temperature dynamic stability. Additionally, RF performance improved, with fT increasing from 48 GHz to 90 GHz and fmax rising from 114 GHz to 133 GHz. This work fully demonstrates this interface optimization strategy simultaneously enhances carrier transport, suppresses trap effects, and improves RF performance, providing an effective pathway for realizing high-frequency, high-power, and highly reliable GaN HEMTs.
  • [1]

    Shinohara K, Regan D C, Tang Y, Corrion A L, Brown D F, Wong J C, Robinson J F, Fung H H, Schmitz A, Oh T C, Kim S J, Chen P S, Nagele R G, Margomenos A D, Micovic M 2013 IEEE Trans. Electron. Dev. 60 2982

    [2]

    Chen K J, Häberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y F 2017 IEEE Trans. Electron. Dev. 64 779

    [3]

    Sehra K, Chanchal, Anand A, Kumari V, Reeta, Gupta M, Mishra M, Rawal D S, Saxena M 2023 IEEE Trans. Electron. Dev. 70 2612

    [4]

    Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Device Lett. 36 660

    [5]

    Basler M, Reiner R, Moench S, Waltereit P, Quay R, Kallfass I, Ambacher O 2020 IEEE Electron Device Lett. 41 993

    [6]

    Tang Y, Shinohara K, Regan D, Andrea C, Brown D, Wong J, Schmitz A, Fung H, Kim S, Micovic M 2015 IEEE Electron Device Lett. 36 549

    [7]

    Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K, Parikh P 2004 IEEE Electron Device Lett. 25 117

    [8]

    Wang P F, Mi M H, An S R, Zhou Y W, Chen Z H, Zhu Q, Du X, Chen Y L, Zhang M, Hou B, Liu R Q, Ma X H, Hao Y 2024 IEEE Electron Device Lett. 45 1717

    [9]

    Wang Y J 2024 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王彦君 2024 博士学位论文 (合肥:中国科学技术大学)]

    [10]

    Imura M, Nakano K, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T, Bandoh A 2007 Jpn. J. Appl. Phys. 46 1458

    [11]

    Yang L Y, Huang W, Wang D, Zhang B Q, Zhang Y B, Zhang J Y, Chen T S, Ge W K, Wu S B, Shen B, Wang X Q 2023 ACS Appl. Electron. Mater 5 4786

    [12]

    Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE Trans. Electron. Dev. 48 560

    [13]

    Binari S C, Ikossi K, Roussos J A, Kruppa W, Park D, Dietrich H B, Koleske D D, Wickenden A E, Henry R L 2001 IEEE Trans. Electron. Dev. 48 465

    [14]

    Wu J S, Lee C C, Wu C H, Kao M L, Weng Y C, Yang C Y, Luc Q H, Lee C T, Ueda D, Chang E Y 2021 IEEE Electron Device Lett. 42 1268

    [15]

    Mahajan D, Khandelwal S 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL) Padua, Italy, June 25-28, 2018 p1

    [16]

    Lee H, Ryu H, Kang J Z, Zhu W J 2024 IEEE Electron Device Lett. 45 312

    [17]

    Zhang Y C, Huang S, Wei K, Zhang S, Wang X H, Zheng Y K, Liu G G, Chen X J, Li Y K, Liu X Y 2020 IEEE Electron Device Lett. 41 701

    [18]

    Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 19601 (in Chinese) [徐爽 许晟瑞 王心颢 卢灏 刘旭 贠博祥 张雅超 张涛 张进成 郝跃 2023 物理学报 72 19601]

    [19]

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801 (in Chinese) [张志荣 房玉龙 尹甲运 郭艳敏 王波 王元刚 李佳 芦伟立 高楠 刘沛 冯志红 2018 物理学报 67 076801]

    [20]

    Utama M I B, Zhang Q, Zhang J, Yuan Y W, Belarre F J, Arbiolbc J, Xiong Q H 2013 Nanoscale 5 3570

    [21]

    Wen Y, Ning J, Wu H D, Zhang H R, Cheng R Q, Yin L, Wang H, Zhang X L, Liu Y, Wang D, Hao Y, Zhang J C, He J 2025 Advanced materials 37(38) 2501916

    [22]

    Makimoto T, Kumakura K, Kobayashi Y, Akasaka T, Yamamoto H 2012 Appl. Phys. Express 5 072102

    [23]

    Wu J X, Li P X, Xu S R, Zhou X W, Tao H C, Yue W K, Wang Y L, Wu J T, Zhang Y C, Hao Y 2020 Materials 13 5118

    [24]

    Liu F, Yu Y, Zhang Y T, Rong X, Wang T, Zheng X T, Sheng B W, Yang L Y, Wei J Q, Wang X P, Li X B, Yang X L, Xu F J, Qin Z X, Zhang Z H, Shen B, Wang X Q 2020 Adv. Sci. 7 2000917

    [25]

    Zaiter A, Michon A, Nemoz M, Courville A, Vennéguès P, Ottapilakkal V, Vuong P, Sundaram S, Ougazzaden A, Brault J 2022 Materials 15 8602

    [26]

    Lv C W, Wang J J, Gu J B 2019 Acta Phys. Sin. 68 077102 (in Chinese) [吕常伟 王臣菊 顾建兵 2019 物理学报 68 077102]

    [27]

    Zhang H R, Ning J, Li S Y, Shen X, Zhang Y N, Wan Z Y, Wang D, Hao Y, Zhang J C 2025 IEEE Electron Device Lett. 46 1693

    [28]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223

    [29]

    Hiroki M, Kumakura K, Kobayashi Y, Akasaka T, Makimoto T, Yamamoto H 2014 Appl. Phys. Lett. 105 1214

    [30]

    Paduano Q, Snure M, Siegel G, Thomson D, Look D 2016 J. Mater. Res. 31 2204

    [31]

    Glavin N R, Chabak K D, Heller E R, Moore E A, Prusnick T A, Maruyama B, Walker D E, Dorsey D L, Paduano Q, Snure M 2017 Adv. Mater. 29 1701838

    [32]

    Ravi L, Rather M A, Lin K L, Wu C T, Yu T Y, Lai K Y, Chyi J I 2023 ACS Appl. Electron. Mater. 5 146

    [33]

    Bai L, Ning J, Wu H D, Wang B Y, Wang D, Li Z H, HaoY, Zhang J C 2024 Scripta Materialia 248 116150

    [34]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223

    [35]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [36]

    Yin Y, Ren F, Wang Y Y, Liu Z Q, Ao J P, Liang M, Wei T B, Yuan G D, Ou H Y, Yan J C, Yi X Y, Wang J X, Li J M 2018 Materials 11 2464

    [37]

    Wu H D, Ning J, Zhang J C, Zeng Y, Jia Y Q, Zhao J L, Bai L, Wang Y B, Li S Y, Wang D, Hao Y 2023 Nanotechnology 34 295202

    [38]

    Hino T, Tomiya S, Miyajima T, Yanashima K, Hashimoto S, Ikeda M 2000 Appl. Phys. Lett. 76 3421

    [39]

    Hiroki M, Kumakura K, Kobayashi Y, Akasaka T, Makimoto T, Yamamoto H 2014 Appl. Phys. Lett. 105 193509

    [40]

    Ning J, Yang Z C, Wu H D, Dong X M, Zhang Y N, Chen Y F, Zhang X B,Wang D, Hao Y, Zhang J C 2025 Nature Communications 16 8144

    [41]

    Yang S, Liu S H, Lu Y Y, Liu C, Chen K J 2015 IEEE Trans. Electron. Dev. 62 1870

    [42]

    Chini A, Meneghesso G, Meneghini M, Fantini F, Verzellesi G, Patti A, Iucolano F 2016 IEEE Trans. Electron. Dev. 63 3473

    [43]

    Kanegae K, Fujikura H, Otoki Y, Konno T, Yoshida T, Horita M, Kimoto T, Suda J 2019 Appl. Phys. Lett. 115 012103

    [44]

    Yang S, Huang S, Wei J, Zheng Z Y, Wang Y R, He J B, Chen K J 2020 IEEE Electron Device Lett. 41 685

    [45]

    Alavijeh A S, Nunes L C, Pedro J C 2024 IEEE Asia-Pacific Microwave Conference (APMC) Bali, Indonesia, November 17-20, p43

    [46]

    Kohlhepp B, Wieczorek N, Geng X M, Böcker J, Dieckerhoff S 2025 Energy Conversion Congress & Expo Europe (ECCE Europe) Birmingham, United Kingdom, August 31 to September 4, p1

    [47]

    Subramani N K, Sahoo A K, Nallatamby J C, Sommet R, Quéré R 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Lisbon, Portugal, June 27-30, p1

    [48]

    He J Q, Wang Q, Zhou G N, Li W M, Jiang Y, Qiao Z P, Tang C Y, Li G, Yu H Y 2022 IEEE Electron Device Lett. 43 529

    [49]

    Song C A, Yang W, Wang W J, Liao J L, Wu P, Jiang H X, Jiang S, Li B 2025 IEEE Electron Device Lett. 46 1289

  • [1] Zhang Dongkai, Hu Qing, Guo Yulong, Zhai Ying, Liu Xushan, Wang Zixu, YU Guohao, Yan Dawei. Study on Forward Transport,Degradation and Breakdown of Hydrogen-Ion-Implanted GaN HEMT Gate. Acta Physica Sinica, doi: 10.7498/aps.75.20251343
    [2] Wang Wei, Li Jin-Yang, Mao Guo-Pei, Yang Yan, Gao Zhi-Qiang, Ma Cong, Zhong Xiang-Yu, Shi Qing. Optical fiber high-temperature pressure sensor with weak temperature sensitivity. Acta Physica Sinica, doi: 10.7498/aps.73.20231155
    [3] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, doi: 10.7498/aps.72.20230638
    [4] Li Zhi-Qiang, Tan Xiao-Yu, Duan Xin-Lei, Zhang Jing-Yi, Yang Jia-Yue. Deep learning molecular dynamics simulation on microwave high-temperature dielectric function of silicon nitride. Acta Physica Sinica, doi: 10.7498/aps.71.20221002
    [5] Li Ming-Zhu, Cai Xiao-Wu, Zeng Chuan-Bin, Li Xiao-Jing, Li Duo-Li, Ni Tao, Wang Juan-Juan, Han Zheng-Sheng, Zhao Fa-Zhan. Effect of high-temperature on holding characteristics in MOSFET ESD protecting device. Acta Physica Sinica, doi: 10.7498/aps.71.20220172
    [6] Dong Jiu-Feng, Deng Xing-Lei, Niu Yu-Juan, Pan Zi-Zhao, Wang Hong. Research progress of polymer based dielectrics for high-temperature capacitor energy storage. Acta Physica Sinica, doi: 10.7498/aps.69.20201006
    [7] Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei. High-pressure structure prediction and high-temperature structural stability of periclase. Acta Physica Sinica, doi: 10.7498/aps.68.20190204
    [8] Zhang Xing, Zhang Yi, Zhang Jian-Wei, Zhang Jian, Zhong Chu-Yu, Huang You-Wen, Ning Yong-Qiang, Gu Si-Hong, Wang Li-Jun. 894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system. Acta Physica Sinica, doi: 10.7498/aps.65.134204
    [9] Gao Ying-Jun, Qin He-Lin, Zhou Wen-Quan, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao. Phase field crystal simulation of grain boundary annihilation under strain strain at high temperature. Acta Physica Sinica, doi: 10.7498/aps.64.106105
    [10] Yuan Song, Duan Bao-Xing, Yuan Xiao-Ning, Ma Jian-Chong, Li Chun-Lai, Cao Zhen, Guo Hai-Jun, Yang Yin-Tang. Experimental research on the new Al0.25Ga0.75N/GaN HEMTs with a step AlGaN layer. Acta Physica Sinica, doi: 10.7498/aps.64.237302
    [11] Han Yong, Long Xin-Ping, Guo Xiang-Li. Prediction of methane PVT relations at high temperatures by a simplified virial equation of state. Acta Physica Sinica, doi: 10.7498/aps.63.150505
    [12] Song Yun-Fei, Yu Guo-Yang, Yin He-Dong, Zhang Ming-Fu, Liu Yu-Qiang, Yang Yan-Qiang. Temperature dependence of elastic modulus of single crystal sapphire investigated by laser ultrasonic. Acta Physica Sinica, doi: 10.7498/aps.61.064211
    [13] Yu Chen-Hui, Luo Xiang-Dong, Zhou Wen-Zheng, Luo Qing-Zhou, Liu Pei-Sheng. Investigation on the current collapse effect of AlGaN/GaN/InGaN/GaN double-heterojunction HEMTs. Acta Physica Sinica, doi: 10.7498/aps.61.207301
    [14] Zhang Jin-Cheng, Mao Wei, Liu Hong-Xia, Wang Chong, Zhang Jin-Feng, Hao Yue, Yang Lin-An, Xu Sheng-Rui, Bi Zhi-Wei, Zhou Zhou, Yang Ling, Wang Hao, Yang Cui, Ma Xiao-Hua. Study on the suppression mechanism of current collapse with field-plates in GaN high-electron mobility transistors. Acta Physica Sinica, doi: 10.7498/aps.60.017205
    [15] Li Ruo-Fan, Yang Rui-Xia, Wu Yi-Bin, Zhang Zhi-Guo, Xu Na-Ying, Ma Yong-Qiang. Research on the current collapse in AlGaN/GaN high-electron-mobility transistors through the inverse piezoelectric polarization model. Acta Physica Sinica, doi: 10.7498/aps.57.2450
    [16] Xi Guang-Yi, Ren Fan, Hao Zhi-Biao, Wang Lai, Li Hong-Tao, Jiang Yang, Zhao Wei, Han Yan-Jun, Luo Yi. Influence of pit defects on AlGaN surface and dislocation defects in GaN buffer layer on current collapse of AlGaN/GaN HEMTs. Acta Physica Sinica, doi: 10.7498/aps.57.7238
    [17] Wei Wei, Lin Ruo-Bing, Feng Qian, Hao Yue. Current collapse mechanism of field-plated AlGaN/GaN HEMTs. Acta Physica Sinica, doi: 10.7498/aps.57.467
    [18] Song Xiao-Shu, Cheng Xin-Lu, Yang Xiang-Dong, Linghu Rong-Feng. Line intensities of 3000—0200 and 1001—0110 transition bands of 14N216O at high temperature. Acta Physica Sinica, doi: 10.7498/aps.56.4428
    [19] Hao Yue, Han Xin-Wei, Zhang Jin-Cheng, Zhang Jin-Feng. Current slump mechanism and its physical model of AlGaN/GaN HEMTs under DC bias. Acta Physica Sinica, doi: 10.7498/aps.55.3622
    [20] Li Gong-Ping, Zhang Mei-Ling. Energetics and structures of high-temperature copper cluster studied by Monte Carlo method. Acta Physica Sinica, doi: 10.7498/aps.54.2873
Metrics
  • Abstract views:  40
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  06 January 2026
  • /

    返回文章
    返回