搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光刻蚀对镀金表面二次电子发射的有效抑制

王丹 叶鸣 冯鹏 贺永宁 崔万照

引用本文:
Citation:

激光刻蚀对镀金表面二次电子发射的有效抑制

王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照

An effective reduction on secondary electron emission yield of gold coated surfaces by laser etching

Wang Dan, Ye Ming, Feng Peng, He Yong-Ning, Cui Wan-Zhao
PDF
HTML
导出引用
  • 使用红外激光刻蚀技术在镀金铝合金表面制备了多种形貌的微孔及交错沟槽阵列. 表征了两类激光刻蚀微阵列结构的三维形貌和二维精细形貌, 分析了样品表面非理想二级粗糙结构的形成机制. 研究了微阵列结构二次电子发射特性对表面形貌的依赖规律. 实验结果表明: 激光刻蚀得到的微阵列结构能够有效抑制镀金表面二次电子产额(secondary electron yield, SEY), 且抑制能力明显优于诸多其他表面处理技术; 微阵列结构对SEY的抑制能力与其孔隙率及深宽比呈现正相关, 且孔隙率对SEY的影响更为显著. 使用蒙特卡罗模拟方法并结合二次电子发射唯象模型和电子轨迹追踪算法, 仿真了各微结构表面二次电子发射特性, 模拟结果从理论上验证了微阵列结构孔隙率及深宽比对表面SEY的影响规律. 本文获得了能够剧烈降低镀金表面SEY的微阵列结构, 理论分析了SEY对微结构特征参数的依赖规律, 对开发空间微波系统中低SEY表面及提高镀金微波器件性能有重要意义.
    Multipactor is a frequent discharging phenomenon for space high-power microwave components, and this detrimental effect is mainly induced by secondary electron emission (SEE) and electron resonance in vacuum. Plenty of researches have verified that suppressing SEE is an efficient approach to mitigate the multipactor. Therefore, low SEE yield surfaces are urgently needed for mitigating the multipactor in the field of space science. In the past few decades, a number of technics have been developed to acquire low SEE yield surfaces, including surface coating, surfaces roughening, depositing coessential nanostructure, etc. Laser etching has been partly reported to be an advisable way to construct micro- or nano-structure on some materials’ surfaces, and able to further suppress the SEE yield. Whereas, employing laser etching to obtain the SEE yield reduction on gold coated surfaces is rarely investigated. In this work, by using the laser etching technic, we fabricate four micro hole arrays and three orthogonal groove arrays with various porosities and aspect ratios, and we also characterize their three-dimensional and accurate two-dimensional morphologies. In addition, we investigate the dependence of SEE yield on surface morphology. Experimental results indicate that the laser etched microstructures can effectively suppress the SEE yield from gold coated surfaces, and the suppression levels on SEE yield of these samples are superior to those of many other low SEE yield technics. Furthermore, experiments reveal that the ability to suppress the SEE yield is positively related to the porosity and aspect ratio, as well as that the porosity influences SEE yield more strongly than the aspect ratio does. To theoretically verify the experimental phenomena, we utilize the Monte Carlo method combining with the SEE phenomenological model and the electron trajectory tracking algorithm, to simulate the SEE characteristics of the fabricated microstructures. And the simulation results can qualitatively explain the experimental phenomena. This work digs out an advisable method to sharply reduce the SEE yield from gold coated surfaces by laser etching, which is of considerable importance for exploiting the low SEE yield surface engineering in space microwave systems, and for improving the performance of the space microwave components with gold coated surface.
      通信作者: 贺永宁, yongning@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U1537211, 61501364)资助的课题.
      Corresponding author: He Yong-Ning, yongning@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1537211, 61501364).
    [1]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 3198Google Scholar

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron Devices 35 1172Google Scholar

    [3]

    Hueso J, Vicente C, Gimeno B, Boria V E, Marini S, Taroncher M 2010 IEEE Trans. Electron Devices 57 3508Google Scholar

    [4]

    Nistor V, González L A, Aguilera L, Montero I, Galán L, Wochner U, Raboso D 2014 Appl. Surf. Sci. 315 445Google Scholar

    [5]

    Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C, Zhang H T 2016 Appl. Surf. Sci. 382 88Google Scholar

    [6]

    Dionne G F 1973 J. Appl. Phys. 44 5361Google Scholar

    [7]

    Dionne G F 1975 J. Appl. Phys. 46 3347Google Scholar

    [8]

    Cazaux J 2010 Appl. Surf. Sci. 257 1002Google Scholar

    [9]

    Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904Google Scholar

    [10]

    叶鸣, 贺永宁, 王瑞 , 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 物理学报 63 147901Google Scholar

    Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901Google Scholar

    [11]

    Valizadeh R, Malyshev O B, Wang S H, Zolotovskaya S A, Gillespie W A, Abdolvand A 2014 Appl. Phys. Lett. 105 231605Google Scholar

    [12]

    Montero I, Mohamed S H, García M, Galán L, Raboso D 2007 J. Appl. Phys. 101 113306Google Scholar

    [13]

    Michizono S, Kinbara A, Saito Y, Yamaguchi S, Anami S, Matuda N 1992 J. Vac. Sci. Technol. A 10 1180Google Scholar

    [14]

    Wang D, He Y N, Cui W Z 2018 J. Appl. Phys. 124 053301Google Scholar

    [15]

    Henrist B, Hilleret N, Scheuerlein C, Taborelli M 2001 Appl. Surf. Sci. 172 95Google Scholar

    [16]

    Pimpec F L, Kirby R E, King F, Pivi M 2005 Nucl. Instrum. Methods Phys. Res. A 551 187Google Scholar

    [17]

    Luo J, Tian P, Pan C T, Roberson A W, Warner J H, Hill E W, Briggs G A D 2011 ACS Nano 5 1047Google Scholar

    [18]

    Thomas S, Pattinson E B 1970 J. Phys. D 3 1469Google Scholar

    [19]

    王丹, 贺永宁, 叶鸣, 崔万照 2018 物理学报 67 087902Google Scholar

    Wang D, He Y N, Ye M, Cui W Z 2018 Acta Phys. Sin. 67 087902Google Scholar

    [20]

    He Y N, Peng W B, Cui W Z, Ye M, Zhao X L, Wang D, Hu T C, Wang R, Li Y 2016 AIP Adv. 6 025122Google Scholar

    [21]

    Valizadeh R, Malyshev O B, Wang S, Sian T, Cropper M D, Sykes N 2017 Appl. Surf. Sci. 404 370Google Scholar

    [22]

    张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554

    Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chinese J. Vac. Sci. Technol. 34 554

    [23]

    Ye M, Wang D, Li Y, He Y N, Cui W Z, Daneshmand M 2017 J. Appl. Phys. 121 074902Google Scholar

    [24]

    Wang D, He Y N, Ye M, Peng W B, Cui W Z 2017 J. Appl. Phys. 122 153302Google Scholar

    [25]

    Lara J D, Pérez F, Alfonseca M, Galán L, Montero I, Román E, Raboso D, Baquero G 2006 IEEE Trans. Plasma Sci. 34 476Google Scholar

  • 图 1  刻蚀图样 (a)微孔阵列; (b)微孔阵列刻蚀单元; (c)正交沟槽阵列; (d)正交沟槽阵列刻蚀单元

    Fig. 1.  Etching patterns: (a) Micro hole array; (b) etching unit of the micro hole array; (c) orthogonal groove array; (d) etching unit of the orthogonal groove array

    图 2  各镀金铝合金样品的三维形貌 (a) #1样品; (b) #2样品; (c) #3样品; (d) #4样品; (e) #5样品; (f) #6样品; (g) #7样品; (h)未经激光刻蚀处理的平滑镀金表面

    Fig. 2.  Three-dimensional morphologies of various gold coated samples: (a) Sample #1; (b) sample #2; (c) sample #3; (d) sample #4; (e) sample #5; (f) sample #6; (g) sample #7; (h) untreated flat gold coated surface

    图 3  SEM下各激光刻蚀样品的二维精细形貌 (a) #1样品; (b) #4样品; (c) #5样品; (d) #7样品

    Fig. 3.  Accurate two-dimensional morphologies of various samples characterized by SEM: (a) Sample #1; (b) sample #4; (c) sample #5; (d) sample #7

    图 4  激光刻蚀样品SEE特性表征 (a)微孔阵列; (b)正交沟槽阵列

    Fig. 4.  Measured SEE characteristics of laser etched samples: (a) Micro hole array; (b) orthogonal groove array

    图 5  不同处理工艺获得的低电子产额表面SEY对比

    Fig. 5.  SEY comparison among some surfaces acquired by various surface treatment technics

    图 6  激光刻蚀样品等效结构SEE特性仿真 (a)微孔阵列; (b)正交沟槽阵列

    Fig. 6.  Simulated SEE characteristics of laser etched samples: (a) Micro hole array; (b) orthogonal groove array

    表 1  各样品刻蚀单元内图形尺寸及激光刻蚀参数

    Table 1.  Sizes of the etching patterns and the detailed etching parameters

    样品编号
    #1 #2 #3 #4 #5 #6 #7
    激光功率/W 16 12 10 6 12 12 12
    $d/{\text{μ}}\rm{m}$ 150 150 150 150 150 100 50
    $b/{\text{μ}}\rm{m}$ 50 50 50 50 50 100 150
    $l/{\text{μ}}\rm{m}$ 200 200 200 200 200 200 200
    扫描次数 400 100 25 5 250 250 250
    理论孔隙率A/% 44.18 44.18 44.18 44.18 43.75 75.00 93.75
    下载: 导出CSV

    表 2  各激光扫描刻蚀样品的特征尺寸、深宽比及孔隙率统计

    Table 2.  Characteristic sizes, aspect ratio and porosity of the laser etched samples

    样品编号
    #1 #2 #3 #4 #5 #6 #7
    $d/{\text{μ}}\rm{m}$ 165 164 158 155 121 83 34
    $h/{\text{μ}}\rm{m}$ 437 324 253 181 306 373 416
    深宽比H 2.65 1.98 1.60 1.17 3.87 3.19 2.51
    孔隙率A/% 53.46 52.81 49.01 47.17 63.40 82.78 97.11
    下载: 导出CSV

    表 3  三种状态下#4样品表面元素原子比例定量分析

    Table 3.  Quantitative analysis of atomic proportion under three surface states for sample #4

    元素
    O Al Ag Au
    原始表面 51.64% 8.24% 40.12% 0
    激光刻蚀后 15.51% 78.76% 5.73% 0
    刻蚀 + 镀金后 11.78% 38.66% 3.92% 45.64%
    下载: 导出CSV
  • [1]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 3198Google Scholar

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron Devices 35 1172Google Scholar

    [3]

    Hueso J, Vicente C, Gimeno B, Boria V E, Marini S, Taroncher M 2010 IEEE Trans. Electron Devices 57 3508Google Scholar

    [4]

    Nistor V, González L A, Aguilera L, Montero I, Galán L, Wochner U, Raboso D 2014 Appl. Surf. Sci. 315 445Google Scholar

    [5]

    Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C, Zhang H T 2016 Appl. Surf. Sci. 382 88Google Scholar

    [6]

    Dionne G F 1973 J. Appl. Phys. 44 5361Google Scholar

    [7]

    Dionne G F 1975 J. Appl. Phys. 46 3347Google Scholar

    [8]

    Cazaux J 2010 Appl. Surf. Sci. 257 1002Google Scholar

    [9]

    Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904Google Scholar

    [10]

    叶鸣, 贺永宁, 王瑞 , 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 物理学报 63 147901Google Scholar

    Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901Google Scholar

    [11]

    Valizadeh R, Malyshev O B, Wang S H, Zolotovskaya S A, Gillespie W A, Abdolvand A 2014 Appl. Phys. Lett. 105 231605Google Scholar

    [12]

    Montero I, Mohamed S H, García M, Galán L, Raboso D 2007 J. Appl. Phys. 101 113306Google Scholar

    [13]

    Michizono S, Kinbara A, Saito Y, Yamaguchi S, Anami S, Matuda N 1992 J. Vac. Sci. Technol. A 10 1180Google Scholar

    [14]

    Wang D, He Y N, Cui W Z 2018 J. Appl. Phys. 124 053301Google Scholar

    [15]

    Henrist B, Hilleret N, Scheuerlein C, Taborelli M 2001 Appl. Surf. Sci. 172 95Google Scholar

    [16]

    Pimpec F L, Kirby R E, King F, Pivi M 2005 Nucl. Instrum. Methods Phys. Res. A 551 187Google Scholar

    [17]

    Luo J, Tian P, Pan C T, Roberson A W, Warner J H, Hill E W, Briggs G A D 2011 ACS Nano 5 1047Google Scholar

    [18]

    Thomas S, Pattinson E B 1970 J. Phys. D 3 1469Google Scholar

    [19]

    王丹, 贺永宁, 叶鸣, 崔万照 2018 物理学报 67 087902Google Scholar

    Wang D, He Y N, Ye M, Cui W Z 2018 Acta Phys. Sin. 67 087902Google Scholar

    [20]

    He Y N, Peng W B, Cui W Z, Ye M, Zhao X L, Wang D, Hu T C, Wang R, Li Y 2016 AIP Adv. 6 025122Google Scholar

    [21]

    Valizadeh R, Malyshev O B, Wang S, Sian T, Cropper M D, Sykes N 2017 Appl. Surf. Sci. 404 370Google Scholar

    [22]

    张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554

    Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chinese J. Vac. Sci. Technol. 34 554

    [23]

    Ye M, Wang D, Li Y, He Y N, Cui W Z, Daneshmand M 2017 J. Appl. Phys. 121 074902Google Scholar

    [24]

    Wang D, He Y N, Ye M, Peng W B, Cui W Z 2017 J. Appl. Phys. 122 153302Google Scholar

    [25]

    Lara J D, Pérez F, Alfonseca M, Galán L, Montero I, Román E, Raboso D, Baquero G 2006 IEEE Trans. Plasma Sci. 34 476Google Scholar

  • [1] 陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳. 磁场辅助激光生长类金刚石膜的微结构及光学性能. 物理学报, 2024, 73(10): 108101. doi: 10.7498/aps.73.20240145
    [2] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响. 物理学报, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [3] 康亚斌, 袁小朋, 王晓波, 李克伟, 宫殿清, 程旭东. 分层化金属陶瓷光热转换涂层的微结构构筑与热稳定性. 物理学报, 2023, 72(5): 057103. doi: 10.7498/aps.72.20221693
    [4] 孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男. 氧化铝表面二次电子发射抑制及其在微放电抑制中的应用. 物理学报, 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [5] 张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生. 二次电子发射对系统电磁脉冲的影响. 物理学报, 2021, 70(16): 165201. doi: 10.7498/aps.70.20210461
    [6] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [7] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [8] 周康, 袁从龙, 李萧, 王骁乾, 沈冬, 郑致刚. 蓝相液晶指向有序的定域化及微结构制备. 物理学报, 2018, 67(6): 066101. doi: 10.7498/aps.67.20172517
    [9] 胡晶, 曹猛, 李永东, 林舒, 夏宁. 微米量级表面结构形貌特性对二次电子发射抑制的优化. 物理学报, 2018, 67(17): 177901. doi: 10.7498/aps.67.20180466
    [10] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究. 物理学报, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [11] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [12] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [13] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [14] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [15] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型. 物理学报, 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [16] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型. 物理学报, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [17] 张忠兵, 欧阳晓平, 夏海鸿, 陈亮, 王群书, 王兰, 马彦良, 潘洪波, 刘林月. 高能质子束流强度绝对测量的二次电子补偿原理研究. 物理学报, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [18] 甄聪棉, 马 丽, 张金娟, 刘 英, 聂向富. Ti(Cr)缓冲层对用于垂直磁记录材料CoCrTa介质磁特性和微结构的影响. 物理学报, 2007, 56(3): 1730-1734. doi: 10.7498/aps.56.1730
    [19] 周炳卿, 刘丰珍, 朱美芳, 谷锦华, 周玉琴, 刘金龙, 董宝中, 李国华, 丁 琨. 利用x射线小角散射技术研究微晶硅薄膜的微结构. 物理学报, 2005, 54(5): 2172-2175. doi: 10.7498/aps.54.2172
    [20] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究. 物理学报, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
计量
  • 文章访问数:  8245
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-16
  • 修回日期:  2019-01-10
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回