搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究

廖建 谢召起 袁健美 黄艳平 毛宇亮

引用本文:
Citation:

3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究

廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮

First-principles study of 3d transition metal Co doped core-shell silicon nanowires

Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang
PDF
导出引用
  • 基于密度泛函理论的第一性原理计算,研究了横截面为五边形和六边形的核壳结构硅纳米线的过渡金属Co原子替代掺杂. 通过比较形成能发现,核心位置掺杂、壳层单链掺杂以及外壳层全替代掺杂的硅纳米线都具有稳定性,其中核心位置掺杂结构的稳定性最高. 掺杂体系均呈现金属性,随着掺杂浓度的增加,电导通道数增加. Co原子掺杂的硅纳米线呈现铁磁性,具有磁矩. Bader电荷分析表明,电荷从Si原子转移至过渡金属Co原子. 与自由态时过渡金属Co原子的磁矩相比,体系中Co原子的磁矩有所降低,这主要是由Co原子4s轨道向3d/4p轨道的电荷转移以及4s,3d,4p的上自旋电子转移至下自旋导致的.
    According to density functional first-principles calculations, we study the substitutional doping of Co atoms in core-shell silicon nanowires. By comparing the formation energies, we find that all the doping configurations obtained from shell-chain doping, core doping, and whole shell doping are stable, and core-shell doping silicon nanowire has the highest structural stability. All the doped configurations show metallic property, and the conductance channels increase with the increasing of doping concentration. Co-doped silicon nanowires show ferromagnetic, possessing magnetic moment. Bader charge analysis shows that charge is transferred from Si atoms to Co atoms in doped silicon nanowires. In transition metal Co atom, charge is transferred from 4s orbital to 3d and 4p orbital. The reducing of unpaired electron in 3d orbital and part of charge transferring from up-spin to down-spin in 4s, 3d and 4p orbital, makes magnetic moments in Co atom reduced.
    • 基金项目: 国家自然科学基金(批准号:11374251,11101346)、湖南省教育厅科学研究基金(批准号:12K046,YB2011B029)和湖南省自然科学基金(批准号:12JJ9002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374251, 11101346), the Scientific Research Foundation of the Education Bureau of Hunan Province, China (Grant Nos. 12K046, YB2011B029), and the Natural Science Foundation of Hunan Province, China (Grant No. 12JJ9002).
    [1]

    Morales A M, Lieber C M 1998 Science 279 208

    [2]

    Tang Y H, Zhang Y F, Lee C S, Wang N, Yu D P, Bello I, Lee S T 1998 Mater. Res. Soc. Symp. Proc. 526 73

    [3]

    Zhang J H, Gu F, Liu Q J, Gu B, Li M 2010 Acta Phys. Sin. 59 4226 (in Chinese) [张加宏, 顾芳, 刘清惓, 顾斌, 李敏 2010 物理学报 59 4226]

    [4]

    Liang W H, Ding X C, Chu L Z, Deng Z C, Guo J X, Wu Z H, Wang Y L 2010 Acta Phys. Sin. 59 8071 (in Chinese) [梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙 2010 物理学报 59 8071]

    [5]

    Liang L, Xu Q F, Hu M L, Su H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301 (in Chinese) [梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 物理学报 62 037301]

    [6]

    Wang M L, Zhang C X, Wu Z L, Jing X L, Xu H J 2014 Chin. Phys. B 23 067802

    [7]

    Liu Y, Liang P, Shu H B, Cao D, Dong Q M, Wang L 2014 Chin. Phys. B 23 067304

    [8]

    Xing Y J, Yu D P, Xi Z H, Xue Z Q 2002 Chin. Phys. 11 1047

    [9]

    Holmes J D, Johnston K P, Doty R C 2000 Science 287 1471

    [10]

    Cui Y, Duan X F, Hu J T 2000 Phys. Chem. 104 5213

    [11]

    Baumer A, Stutzmann M S 2004 Appl. Phys. Lett. 85 943

    [12]

    Li D Y, Wu Y Y, Shi L 2003 Appl. Phys. Lett. 83 2934

    [13]

    Durgun E, Akman N, Ciraci S 2008 Phys. Rev. B 78 195116

    [14]

    Durgun E, Çakır D, Akman N 2007 Phys. Rev. Lett. 99 256806

    [15]

    Sen P, Glseren O, Yildirim T 2002 Phys. Rev. B 65 235433

    [16]

    Menon M, Andriotis N, Froudakis G 2002 Nano Lett. 2 301

    [17]

    Nishio K, Ozaki T, Morishita T 2010 Phys. Rev. B 81 115444

    [18]

    Dumitrică T, Hua M, Yakobson B I 2004 Phys. Rev. B 70 241303

    [19]

    Singh A K, Briere T M, Kumar V, Kawazoe Y 2003 Phys. Rev. Lett. 91 146802

    [20]

    Jang Y R, Jo C, Lee J I 2005 IEEE Trans. Magn. 41 3118

    [21]

    Berkdemir C, Gleeren O 2009 Phys. Rev. B 80 115334

    [22]

    Vila L, Vincent P, Pra L D D, Pirio G, Minoux E, Gangloff L, Demoustier-Champagne S, Sarazin N, Ferain E, Legras R, Piraux L, Legagneux P 2004 Nano Lett. 4 521

    [23]

    Zhao L Y, Liao K, Pynenburg M, Wong L, Heinig N, Thomas J P, Leung K T 2013 ACS Appl. Mater. Inter. 5 2410

    [24]

    Tsai C I, Yeh P H, Wang C Y, Wu H W, Chen U S, Liu M Y, Wu W W, Wang Z L 2009 Cryst. Growth Des. 9 4514

    [25]

    Seo K, Varadwaj K S K, Mohanty P, Lee S, Jo Y, Jung M H, Kim J, Kim B 2007 Nano Lett. 7 1240

    [26]

    Seo K, Lee S, Yoon H, In J, Varadwaj K S K, Jo Y, Jung M H, Kim J, Kim B 2009 ACS Nano 3 1145

    [27]

    Kresse G, Hafener J 1994 Phys. Rev. B 49 14251

    [28]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [29]

    Payne M C, Teter M P, Arias T A, Allan D C, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [30]

    Kresse G, Hafener J 1994 Phys. Rev. B 49 14251

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [34]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [35]

    Menthfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

  • [1]

    Morales A M, Lieber C M 1998 Science 279 208

    [2]

    Tang Y H, Zhang Y F, Lee C S, Wang N, Yu D P, Bello I, Lee S T 1998 Mater. Res. Soc. Symp. Proc. 526 73

    [3]

    Zhang J H, Gu F, Liu Q J, Gu B, Li M 2010 Acta Phys. Sin. 59 4226 (in Chinese) [张加宏, 顾芳, 刘清惓, 顾斌, 李敏 2010 物理学报 59 4226]

    [4]

    Liang W H, Ding X C, Chu L Z, Deng Z C, Guo J X, Wu Z H, Wang Y L 2010 Acta Phys. Sin. 59 8071 (in Chinese) [梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙 2010 物理学报 59 8071]

    [5]

    Liang L, Xu Q F, Hu M L, Su H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301 (in Chinese) [梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 物理学报 62 037301]

    [6]

    Wang M L, Zhang C X, Wu Z L, Jing X L, Xu H J 2014 Chin. Phys. B 23 067802

    [7]

    Liu Y, Liang P, Shu H B, Cao D, Dong Q M, Wang L 2014 Chin. Phys. B 23 067304

    [8]

    Xing Y J, Yu D P, Xi Z H, Xue Z Q 2002 Chin. Phys. 11 1047

    [9]

    Holmes J D, Johnston K P, Doty R C 2000 Science 287 1471

    [10]

    Cui Y, Duan X F, Hu J T 2000 Phys. Chem. 104 5213

    [11]

    Baumer A, Stutzmann M S 2004 Appl. Phys. Lett. 85 943

    [12]

    Li D Y, Wu Y Y, Shi L 2003 Appl. Phys. Lett. 83 2934

    [13]

    Durgun E, Akman N, Ciraci S 2008 Phys. Rev. B 78 195116

    [14]

    Durgun E, Çakır D, Akman N 2007 Phys. Rev. Lett. 99 256806

    [15]

    Sen P, Glseren O, Yildirim T 2002 Phys. Rev. B 65 235433

    [16]

    Menon M, Andriotis N, Froudakis G 2002 Nano Lett. 2 301

    [17]

    Nishio K, Ozaki T, Morishita T 2010 Phys. Rev. B 81 115444

    [18]

    Dumitrică T, Hua M, Yakobson B I 2004 Phys. Rev. B 70 241303

    [19]

    Singh A K, Briere T M, Kumar V, Kawazoe Y 2003 Phys. Rev. Lett. 91 146802

    [20]

    Jang Y R, Jo C, Lee J I 2005 IEEE Trans. Magn. 41 3118

    [21]

    Berkdemir C, Gleeren O 2009 Phys. Rev. B 80 115334

    [22]

    Vila L, Vincent P, Pra L D D, Pirio G, Minoux E, Gangloff L, Demoustier-Champagne S, Sarazin N, Ferain E, Legras R, Piraux L, Legagneux P 2004 Nano Lett. 4 521

    [23]

    Zhao L Y, Liao K, Pynenburg M, Wong L, Heinig N, Thomas J P, Leung K T 2013 ACS Appl. Mater. Inter. 5 2410

    [24]

    Tsai C I, Yeh P H, Wang C Y, Wu H W, Chen U S, Liu M Y, Wu W W, Wang Z L 2009 Cryst. Growth Des. 9 4514

    [25]

    Seo K, Varadwaj K S K, Mohanty P, Lee S, Jo Y, Jung M H, Kim J, Kim B 2007 Nano Lett. 7 1240

    [26]

    Seo K, Lee S, Yoon H, In J, Varadwaj K S K, Jo Y, Jung M H, Kim J, Kim B 2009 ACS Nano 3 1145

    [27]

    Kresse G, Hafener J 1994 Phys. Rev. B 49 14251

    [28]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [29]

    Payne M C, Teter M P, Arias T A, Allan D C, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [30]

    Kresse G, Hafener J 1994 Phys. Rev. B 49 14251

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [34]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [35]

    Menthfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

  • [1] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [2] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [3] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [4] 陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫. 掺杂对金属-MoS2界面性质调制的第一性原理研究. 物理学报, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [5] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [6] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [7] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [8] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [9] 范立华, 曹觉先. 过渡族金属掺杂Al(111)表面对氢分子催化分解的影响. 物理学报, 2015, 64(3): 038801. doi: 10.7498/aps.64.038801
    [10] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [11] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [12] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [13] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [14] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [15] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究. 物理学报, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [16] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [17] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [18] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [19] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [20] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算. 物理学报, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
计量
  • 文章访问数:  2667
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-19
  • 修回日期:  2014-04-29
  • 刊出日期:  2014-08-05

3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究

  • 1. 湘潭大学材料与光电物理学院, 微纳能源材料与器件湖南省重点实验室, 湘潭 411105;
  • 2. 湘潭大学数学与计算科学学院, 科学工程计算与数值仿真湖南省重点实验室, 湘潭 411105
    基金项目: 国家自然科学基金(批准号:11374251,11101346)、湖南省教育厅科学研究基金(批准号:12K046,YB2011B029)和湖南省自然科学基金(批准号:12JJ9002)资助的课题.

摘要: 基于密度泛函理论的第一性原理计算,研究了横截面为五边形和六边形的核壳结构硅纳米线的过渡金属Co原子替代掺杂. 通过比较形成能发现,核心位置掺杂、壳层单链掺杂以及外壳层全替代掺杂的硅纳米线都具有稳定性,其中核心位置掺杂结构的稳定性最高. 掺杂体系均呈现金属性,随着掺杂浓度的增加,电导通道数增加. Co原子掺杂的硅纳米线呈现铁磁性,具有磁矩. Bader电荷分析表明,电荷从Si原子转移至过渡金属Co原子. 与自由态时过渡金属Co原子的磁矩相比,体系中Co原子的磁矩有所降低,这主要是由Co原子4s轨道向3d/4p轨道的电荷转移以及4s,3d,4p的上自旋电子转移至下自旋导致的.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回