搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究

刘梦溪 张艳锋 刘忠范

引用本文:
Citation:

石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究

刘梦溪, 张艳锋, 刘忠范

Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures

Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan
PDF
导出引用
  • 石墨烯-六方氮化硼面内异质结构因可调控石墨烯的能带结构而受到广泛关注. 本文介绍了在超高真空体系内, 利用两步生长法在两类对石墨烯分别有强和弱电子掺杂的基底, 即Rh(111)和Ir(111)上制备石墨烯-六方氮化硼单原子层异质结构. 通过扫描隧道显微镜及扫描隧道谱对这两种材料的形貌和电子结构进行研究发现: 石墨烯和六方氮化硼倾向于拼接生长形成单层的异质结构, 而非形成各自分立的畴区; 在拼接边界处, 石墨烯和六方氮化硼原子结构连续无缺陷; 拼接边界多为锯齿形型, 该实验结果与密度泛函理论计算结果相符合; 拼接界面处的石墨烯和六方氮化硼分别具有各自本征的电子结构, 六方氮化硼对石墨烯未产生电子掺杂效应.
    In-plane heterostructure of hexagonal boron nitride and graphene (h-BN-G) has become a research focus of graphene due to its predicted fascinating properties such as bandgap opening and magnetism, which hence has ignited the attempt of experimentally growing such in-plane two-dimensional (2D) hybrid materials. Many previous researches demonstrated the synthesis of such heterostructures on Cu foils via chemical vapor deposition (CVD) process. The obtained 2D hybrid materials would offer a possibility for fabricating atomically thin electronic devices. However, many fundamental issues are still unclear, including the in-plane atomic continuity, the edge type, and the electronic properties at the boundary of hybridized h-BN and graphene domain. To clarify these issues, we report the syntheses of h-BN-G monolayer heterostructures on strongly coupled Rh(111) substrate and weakly coupled Ir(111) substrate via a two-step growth process in an ultrahigh vacuum (UHV) system, respectively. With the aid of scanning tunneling microscopy (STM), it is revealed that graphene and h-BN could be linked together seamlessly on an atomic scale at the linking boundaries. More importantly, we find that the atomically sharp zigzag-type boundaries dominate the patching interface between graphene and h-BN as demonstrated by atomic-scale STM images. To understand the physical origin of the atomic linking of the h-BN-G heterostructures, we also perform density functional theory (DFT) calculations, including geometry optimizations and binding energy calculations for different kinds of linking interfaces. The calculated results reconfirm that graphene prefers to grow on the h-BN domain edges and form zigzag linking boundaries. Besides the atomic structures on the linking interfaces, the electronic characteristics are also of particular importance. It is worth noting that the substrates coupled strongly with graphene by π-d orbital hybridization (such as Rh(111) and Ru(0001)), lead to downward shift of graphene π-bands away from the Fermi level, or decay of the intrinsic electronic structure of graphene. In this regard, the influence of h-BN on the electronic property of graphene is hard to identify on such h-BN-G heterostructures. The weakly coupled Ir(111) is chosen to be a perfect substrate to investigate the interface electronic properties of h-BN-G heterostructure due to the absence of substrate electronic doping effect. Scanning tunneling spectroscopy studies indicate that the graphene and h-BN tend to exhibit their own intrinsic electronic features near the linking boundaries on Ir(111). Therefore, the present work offers a deep insight into the h-BN-G boundary structures and the effect of adlayer-substrate coupling both geometrically and electronically.
    • 基金项目: 国家自然科学基金(批准号: 51222201, 51290272, 11304053, 51121091)和国家科技支撑计划(批准号: 2011CB921903, 2012CB921404, 2012CB933404, 2011CB93300, 2013CB932603)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51222201, 51290272, 11304053, 51121091), and the Ministry of Science and Technology of China (Grant Nos. 2011CB921903, 2012CB921404, 2012CB933404, 2011CB93300, 2013CB932603).
    [1]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666

    [2]

    Novoselov K, Geim A K, Morozov S, Jiang D, Grigorieva M K I, Dubonos S, Firsov A 2005 Nature 438 197

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    da Rocha Martins J, Chacham H 2010 ACS Nano 5 385

    [5]

    Shinde P P, Kumar V 2011 Phys. Rev. B 84 125401

    [6]

    Zhao R, Wang J, Yang M, Liu Z, Liu Z 2012 J. Phys. Chem. C 116 21098

    [7]

    Ramasubramaniam A, Naveh D 2011 Phys. Rev. B 84 075405

    [8]

    Bhowmick S, Singh A K, Yakobson B I 2011 J. Phys. Chem. C 115 9889

    [9]

    Jiang J W, Wang J S, Wang B S 2011 Appl. Phys. Lett. 99 043109

    [10]

    Pruneda J 2010 Phys. Rev. B 81 161409

    [11]

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K, Balicas L 2010 Nat. Mater. 9 430

    [12]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P 2013 Nat. Nanotechn. 8 119

    [13]

    Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Mller D A, Park J 2012 Nature 488 627

    [14]

    Sutter P, Cortes R, Lahiri J, Sutter E 2012 Nano Lett. 12 4869

    [15]

    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z 2013 Nano Lett. 13 3439

    [16]

    Lu J, Zhang K, Liu X F, Zhang H, Sum T C, Neto A H C, Loh K P 2013 Nat. Commun. 4 2681

    [17]

    Liu M, Li Y, Chen P, Sun J, Ma D, Li Q, Gao T, Gao Y, Cheng Z, Qiu X, Fang Y, Liu Z 2014 Nano Lett. 14 6342

    [18]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217

    [19]

    Dong G, Fourre é B, Tabak F C, Frenken J W 2010 Phys. Rev. Lett. 104 096102

    [20]

    Voloshina E N, Dedkov Y S, Torbrgge S, Thissen A, Fonin M 2012 Appl. Phys. Lett. 100 241606

    [21]

    Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z 2013 Small 9 1359

    [22]

    Sicot M, Leicht P, Zusan A, Bouvron S, Zander O, Weser M, Dedkov Y S, Horn K, Fonin M 2012 ACS Nano 6 151

    [23]

    Zheng F, Zhou G, Liu Z, Wu J, Duan W, Gu B-L, Zhang S 2008 Phys. Rev. B 78 205415

    [24]

    Nakamura J, Nitta T, Natori A 2005 Phys. Rev. B 72 205429

    [25]

    Liu Y, Bhowmick S, Yakobson B I 2011 Nano Lett. 11 3113

    [26]

    Sánchez-Barriga J, Varykhalov A, Scholz M, Rader O, Marchenko D, Rybkin A, Shikin A, Vescovo E 2010 Diam. Relat. Mater. 19 734

    [27]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175

    [28]

    Usachov D, Fedorov A, Vilkov O, Adamchuk V, Yashina L, Bondarenko L, Saranin A, Grneis A, Vyalikh D 2012 Phys. Rev. B 86 155151

    [29]

    Martoccia D, Willmott P, Brugger T, Björck M, Gnther S, Schleptz C, Cervellino A, Pauli S, Patterson B, Marchini S 2008 Phys. Rev. Lett. 101 126102

    [30]

    Ma T, Ren W, Zhang X, Liu Z, Gao Y, Yin L C, Ma X L, Ding F, Cheng H M 2013 Proc. Natl. Acad. Sci. 110 20386

    [31]

    Shu H, Chen X, Tao X, Ding F 2012 ACS Nano 6 3243

    [32]

    Phark S-h, Borme J, Vanegas A L, Corbetta M, Sander D, Kirschner J 2012 Nanoscale Res. Lett. 7 1

    [33]

    Drost R, Uppstu A, Schulz F, Hämäläinen S K, Ervasti M, Harju A, Liljeroth P 2014 Nano Lett. 14 5128

  • [1]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666

    [2]

    Novoselov K, Geim A K, Morozov S, Jiang D, Grigorieva M K I, Dubonos S, Firsov A 2005 Nature 438 197

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    da Rocha Martins J, Chacham H 2010 ACS Nano 5 385

    [5]

    Shinde P P, Kumar V 2011 Phys. Rev. B 84 125401

    [6]

    Zhao R, Wang J, Yang M, Liu Z, Liu Z 2012 J. Phys. Chem. C 116 21098

    [7]

    Ramasubramaniam A, Naveh D 2011 Phys. Rev. B 84 075405

    [8]

    Bhowmick S, Singh A K, Yakobson B I 2011 J. Phys. Chem. C 115 9889

    [9]

    Jiang J W, Wang J S, Wang B S 2011 Appl. Phys. Lett. 99 043109

    [10]

    Pruneda J 2010 Phys. Rev. B 81 161409

    [11]

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K, Balicas L 2010 Nat. Mater. 9 430

    [12]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P 2013 Nat. Nanotechn. 8 119

    [13]

    Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Mller D A, Park J 2012 Nature 488 627

    [14]

    Sutter P, Cortes R, Lahiri J, Sutter E 2012 Nano Lett. 12 4869

    [15]

    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z 2013 Nano Lett. 13 3439

    [16]

    Lu J, Zhang K, Liu X F, Zhang H, Sum T C, Neto A H C, Loh K P 2013 Nat. Commun. 4 2681

    [17]

    Liu M, Li Y, Chen P, Sun J, Ma D, Li Q, Gao T, Gao Y, Cheng Z, Qiu X, Fang Y, Liu Z 2014 Nano Lett. 14 6342

    [18]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217

    [19]

    Dong G, Fourre é B, Tabak F C, Frenken J W 2010 Phys. Rev. Lett. 104 096102

    [20]

    Voloshina E N, Dedkov Y S, Torbrgge S, Thissen A, Fonin M 2012 Appl. Phys. Lett. 100 241606

    [21]

    Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z 2013 Small 9 1359

    [22]

    Sicot M, Leicht P, Zusan A, Bouvron S, Zander O, Weser M, Dedkov Y S, Horn K, Fonin M 2012 ACS Nano 6 151

    [23]

    Zheng F, Zhou G, Liu Z, Wu J, Duan W, Gu B-L, Zhang S 2008 Phys. Rev. B 78 205415

    [24]

    Nakamura J, Nitta T, Natori A 2005 Phys. Rev. B 72 205429

    [25]

    Liu Y, Bhowmick S, Yakobson B I 2011 Nano Lett. 11 3113

    [26]

    Sánchez-Barriga J, Varykhalov A, Scholz M, Rader O, Marchenko D, Rybkin A, Shikin A, Vescovo E 2010 Diam. Relat. Mater. 19 734

    [27]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175

    [28]

    Usachov D, Fedorov A, Vilkov O, Adamchuk V, Yashina L, Bondarenko L, Saranin A, Grneis A, Vyalikh D 2012 Phys. Rev. B 86 155151

    [29]

    Martoccia D, Willmott P, Brugger T, Björck M, Gnther S, Schleptz C, Cervellino A, Pauli S, Patterson B, Marchini S 2008 Phys. Rev. Lett. 101 126102

    [30]

    Ma T, Ren W, Zhang X, Liu Z, Gao Y, Yin L C, Ma X L, Ding F, Cheng H M 2013 Proc. Natl. Acad. Sci. 110 20386

    [31]

    Shu H, Chen X, Tao X, Ding F 2012 ACS Nano 6 3243

    [32]

    Phark S-h, Borme J, Vanegas A L, Corbetta M, Sander D, Kirschner J 2012 Nanoscale Res. Lett. 7 1

    [33]

    Drost R, Uppstu A, Schulz F, Hämäläinen S K, Ervasti M, Harju A, Liljeroth P 2014 Nano Lett. 14 5128

  • [1] 贾燕伟, 何健, 何萌, 朱肖华, 赵上熳, 刘金龙, 陈良贤, 魏俊俊, 李成明. h-BN/diamond异质结的制备与沟道载流子输运性质. 物理学报, 2022, 71(22): 228101. doi: 10.7498/aps.71.20220995
    [2] 李文辉, 陈岚, 吴克辉. 硼烯的实验制备. 物理学报, 2022, 71(10): 108104. doi: 10.7498/aps.71.20220155
    [3] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构. 物理学报, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [4] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [5] 孙志海, 黄强, 张颖, 黄鹏儒, 植慧茵, 邹勇进, 徐芬, 孙立贤. 六方氮化硼单层中一种(CN)3VB缺陷的第一性原理计算. 物理学报, 2021, 70(3): 033102. doi: 10.7498/aps.70.20201364
    [6] 姜程鑫, 陈令修, 王慧山, 王秀君, 陈晨, 王浩敏, 谢晓明. 六方氮化硼层间气泡制备与压强研究. 物理学报, 2021, 70(6): 069801. doi: 10.7498/aps.70.20201482
    [7] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [8] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [9] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [10] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [11] 郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧. 金属衬底上高质量大面积石墨烯的插层及其机制. 物理学报, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [12] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [13] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [14] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [15] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [16] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [17] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [18] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [19] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  5272
  • PDF下载量:  793
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-12
  • 修回日期:  2015-02-13
  • 刊出日期:  2015-04-05

石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究

  • 1. 北京大学化学与分子工程学院, 北京大学纳米化学研究中心, 北京 100871;
  • 2. 北京大学工学院材料科学与工程系, 北京 100871
    基金项目: 国家自然科学基金(批准号: 51222201, 51290272, 11304053, 51121091)和国家科技支撑计划(批准号: 2011CB921903, 2012CB921404, 2012CB933404, 2011CB93300, 2013CB932603)资助的课题.

摘要: 石墨烯-六方氮化硼面内异质结构因可调控石墨烯的能带结构而受到广泛关注. 本文介绍了在超高真空体系内, 利用两步生长法在两类对石墨烯分别有强和弱电子掺杂的基底, 即Rh(111)和Ir(111)上制备石墨烯-六方氮化硼单原子层异质结构. 通过扫描隧道显微镜及扫描隧道谱对这两种材料的形貌和电子结构进行研究发现: 石墨烯和六方氮化硼倾向于拼接生长形成单层的异质结构, 而非形成各自分立的畴区; 在拼接边界处, 石墨烯和六方氮化硼原子结构连续无缺陷; 拼接边界多为锯齿形型, 该实验结果与密度泛函理论计算结果相符合; 拼接界面处的石墨烯和六方氮化硼分别具有各自本征的电子结构, 六方氮化硼对石墨烯未产生电子掺杂效应.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回