搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高灵敏度太赫兹超导探测器

史生才 李婧 张文 缪巍

引用本文:
Citation:

超高灵敏度太赫兹超导探测器

史生才, 李婧, 张文, 缪巍

Terahertz high-sensitivity superconducting detectors

Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei
PDF
导出引用
  • 太赫兹(THz)波段一般定义为0.110 THz的频率区间, 对应波长范围3 mm30 m, 覆盖短毫米波至亚毫米波段(远红外). 尽管人们早已认识到太赫兹波段具有非常重要的科学意义和广泛的应用前景, 但该波段仍然是一个有待全面研究和开发的电磁频率窗口. 因此, 太赫兹波段的天文观测在天体物理及宇宙学研究中具有不可替代的作用, 对于理解宇宙状态和演化具有非常重要的意义. 具有超高灵敏度的太赫兹超导探测器, 已经成为太赫兹波段观测的主要手段. 本文主要阐述了太赫兹超导探测器的基本类型和工作原理, 以及中国科学院紫金山天文台在该领域的主要研究成果和进展.
    The terahertz regime, as a last radio window, remains to be fully explored, and astronomical and atmospheric observations in this regime are scientifically important. Like other frequency regimes, developing high-sensitivity detectors (coherent and incoherent) is of particular significance for both ground-based and space-borne facilities. As the coherent detector of choice below 1.4 THz, superconductor-insulator-superconductor (SIS) heterodyne mixers have achieved as high a sensitivity as five times the quantum limit around 1.4 THz. It is, however, still a challenge to developing SIS mixers at frequencies beyond 1.4 THz with considerable transmission loss in superconducting circuits due to the Cooper-pair breaking by energetic photons and increased many difficulties in designing and fabricating. So far, superconducting hot electron bolometer (HEB) mixers have been the most sensitive heterodyne detectors at frequencies above 1.5 THz, and successfully used to detect molecular spectral lines up to 2.5 THz from ground-based and space telescopes. Although spiral-antenna coupled NbN HEB mixers show a good sensitivity in the whole THz frequency range, the directly measured spectral response with Fourier transform spectrometer falls quickly as frequency increases, especially above 3 THz. The terahertz band is also of particular importance to observe astronomical objects such as cosmic microwave background, early distant objects, cold objects and dusty objects. Aiming at such objects, we develop a terahertz imaging array system by combining advanced superconducting detectors such as transition edge sensor (TES) and microwave kinetic inductance detectors (MKIDs), thus the system has a frequency band centred at 350 m, an operational temperature of 0.3 K, and a sensitivity reaching background limit performance for ground-based applications. In addition, it is expected to have some breakthroughs in ultra-sensitive superconducting TES and MKID, low noise multi-channel readout and multiplexing, efficient terahertz-wave coupling technology, and large-scale array system integration. The developed terahertz imaging array system will serve as the next-generation instrument of Dome A 5 m terahertz telescope, conducting a 350 m-band legacy survey for studying the planets, stars, galaxies and cosmology. Besides the application in astronomy, the developed terahertz imaging array system can also be applied to some areas requiring rapid detection such as security, deep space exploration, and biomedical imaging. In this paper, we mainly introduce the superconducting detectors developed at Purple Mountain Observatory and those for international collaborative projects.
      通信作者: 史生才, scshi@pmo.ac.cn
    • 基金项目: 国家重大科研仪器研制项目(批准号: 11127903)、国家自然科学基金重大项目(批准号: 11190012)、中国科学院战略性先导科技专项(批准号: XDB04010300)和国家自然科学基金优秀青年科学基金(批准号: 11422326, 11222329)资助的课题.
      Corresponding author: Shi Sheng-Cai, scshi@pmo.ac.cn
    • Funds: Project supported by the National Major Scientific Instruments Development Project, China (Grant No. 11127903), the Major Program of the National Natural Science Foundation of China (Grant No. 11190012), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB04010300), and the Outstanding Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11422326, 11222329).
    [1]

    Phillips T G, Keene J 1992 Proc. IEEE 80 1662

    [2]

    Zmuidzinas J, Richards P L 2004 Proc. IEEE 92 1598

    [3]

    Tucker J R, Feldman M J 1985 Rev. Mod. Phys. 57 1055

    [4]

    Shan W L, Shi S C, Sekimoto Y, Noguchi T 2007 IEEE Microw. Wirel. Co. 17 268

    [5]

    Jackson B D, de Lange G, Zijlstra T, Kroug M, Kooi J W, Stern J A, Klapwijk T M 2006 IEEE Trans. Microw. Theory Tech. 54 547

    [6]

    Karpov A, Miller D, Rice F, Stern J A, Bumble B, LeDuc H G, Zmuidzinas J 2007 IEEE Trans. Appl. Supercond. 17 343

    [7]

    Li J, Takeda M, Wang Z, Shi S C, Yang J 2008 Appl. Phys. Lett. 92 222504

    [8]

    Gol'tsman G N, Semenov A D, Gousev Y P, Zorin M A, Godidze I G, Gershenzon E M, Lang P T, Knott W J, Renk K F 1991 Supercond. Sci. Technol. 4 453

    [9]

    Prober D E 1993 Appl. Phys. Lett. 62 2119

    [10]

    Shi S C 2012 Sci. China: Inform. Sci. 55 120

    [11]

    Jiang Y, Jin B B, Xu W W, Kang L, Chen J, Wu P H 2012 Sci. China: Inform. Sci. 55 64

    [12]

    Jiang L, Miao W, Zhang W, Li N, Lin Z H, Yao Q J, Shi S C, Svechnikov S I, Vakhtomin Y B, Antipov S V, Voronov B M, Kaurova N S, Gol'tsman G N 2006 IEEE Trans. Microw. Theory Tech. 54 2944

    [13]

    Miao W, Zhang W, Zhong J Q, Shi S C, Delorme Y, Lefevre R, Feret A, Vacelet T 2014 Appl. Phys. Lett. 104 052605

    [14]

    Zhang W, Khosropanah P, Gao J R, Kollberg E L, Yngvesson K S, Bansal T, Barends R, Klapwijk T M 2010 Appl. Phys. Lett. 96 111113

    [15]

    Zhou K M, Miao W, Lou Z, Hu J, Li S L, Zhang W, Shi S C, Lefevre R, Delorme Y, Vacelet T 2015 IEEE Trans. Appl. Supercond. 25 2300805

    [16]

    Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156

    [17]

    Gao J R, Hovenier J N, Yang Z Q, Baselmans J J A, Baryshev A, Hajenius M, Klapwijk T M, Adam A J L, Klaassen T O, Williams B S, Kumar S, Hu Q Reno J L 2005 Appl. Phys. Lett. 86 244104

    [18]

    Hubers H W, Pavlov S G Semenov A D, Kohler R, Mahler L, Tredicucci A, Beere H E, Ritchie D A, Linfield E H 2005 Opt. Express 13 5890

    [19]

    Khoscropanah P, Baryshev A, Zhang W, Jellema W, Hovenier J N, Gao J R, Klapwijk T M, Paveliev D G, Williams B S Kumar S, Hu Q, Reno J L, Klein B, Hesler J L 2009 Opt. Lett. 34 2958

    [20]

    Danylov A A Light A R, Waldman J, Erickson N R, Qian X F, Goodhue W D 2012 Opt. Express 20 27908

    [21]

    Barkan A, Tittell F K, Mittleman D M, Dengler R, Siegel P H, Scalari G, Ajili L, Faist J, Beere H E, Linfield E H, Davies A G, Ritchie D A 2004 Opt. Lett. 29 575

    [22]

    Amanti M I, Scalari G, Castellano F, Beck M, Faist J 2010 Opt. Express 18 6390

    [23]

    Ren Y, Hovenier J N, Higgins R, Gao J R, Klapwijk T M, Shi S C, Bell A, Klein B, Williams B S, Kumar S, Hu Q, Reno J L 2010 Appl. Phys. Lett. 97 161105

    [24]

    Ren Y, Hayton D J, Hovenier J N, Cui M, Gao J R, Klapwijl T M, Shi S C, Kao T Y, Hu Q, Reno J L 2012 Appl. Phys. Lett. 101 101111

    [25]

    Ren Y, Hovenier J N, Cui M, Hayton D J, Gao J R, Klapwijl T M, Shi S C, Kao T Y, Hu Q, Reno J L 2012 Appl. Phys. Lett. 100 041111

    [26]

    Richter H, Semenov A D, Pavlov S G, Mahler L, Tredicucci A, Beere H E, Ritchie D A, Il'in K S, Siegel M, Hubers H W 2008 Appl. Phys. Lett. 93 141108

    [27]

    Miao W, Lou Z, Xu G Y, Hu J, Li S L, Zhang W, Zhou K M, Yao Q J, Zhang K, Duan W Y, Shi S C, Colombelli R, Beere H E, Ritchie D A 2015 Opt. Express 23 4453

    [28]

    Xu G Y, Li L H, Isac N, Halioua Y, Davies A G, Linfield E H, Colombelli R 2014 Appl. Phys. Lett. 104 091112

    [29]

    Wanke M C, Young E W, Nordquist C D, Cich M J, Grine A D, Fuller C T, Reno J L, Lee M 2010 Nat. Photon 4 565

    [30]

    Miao W, Zhang W, Zhou K M, Li S L, Zhang K, Duan W Y, Yao Q J, Shi S C 2013 Supercond. Sci. Tech. 26 085005

    [31]

    Irwin K D, Hilton G C 2005 Transition-Edge Sensors (Springer: Cryogenic Particle Detection in Topics in Applied Physics) pp63-150

    [32]

    Zhang W, Zhong J Q, Miao W, Duan W Y, Yao Q J, Shi S C, Martino J, Pajot F, Prele D, Voisin F, Piat M 2015 IEEE Trans. Appl. Supercond. 25 2100204

    [33]

    Zhang Q Y, Wang T S, Liu J S, Dong W H, He G F, Li T F, Zhou X X, Chen W 2014 Chin. Phys. B 23 118502

    [34]

    Datta R, Hunmayr J, Munson C, Austermann J, Beall J, Becker D, Cho H M, Halverson N, Hilton G, Irwin K, Li D, McMahon J, Newburgh L, Nibarger J, Niemack M, Schmitt D, Smith H, Staggs S, van Lanen J, Wollack E 2014 J. Low Temp. Phys. 176 670

  • [1]

    Phillips T G, Keene J 1992 Proc. IEEE 80 1662

    [2]

    Zmuidzinas J, Richards P L 2004 Proc. IEEE 92 1598

    [3]

    Tucker J R, Feldman M J 1985 Rev. Mod. Phys. 57 1055

    [4]

    Shan W L, Shi S C, Sekimoto Y, Noguchi T 2007 IEEE Microw. Wirel. Co. 17 268

    [5]

    Jackson B D, de Lange G, Zijlstra T, Kroug M, Kooi J W, Stern J A, Klapwijk T M 2006 IEEE Trans. Microw. Theory Tech. 54 547

    [6]

    Karpov A, Miller D, Rice F, Stern J A, Bumble B, LeDuc H G, Zmuidzinas J 2007 IEEE Trans. Appl. Supercond. 17 343

    [7]

    Li J, Takeda M, Wang Z, Shi S C, Yang J 2008 Appl. Phys. Lett. 92 222504

    [8]

    Gol'tsman G N, Semenov A D, Gousev Y P, Zorin M A, Godidze I G, Gershenzon E M, Lang P T, Knott W J, Renk K F 1991 Supercond. Sci. Technol. 4 453

    [9]

    Prober D E 1993 Appl. Phys. Lett. 62 2119

    [10]

    Shi S C 2012 Sci. China: Inform. Sci. 55 120

    [11]

    Jiang Y, Jin B B, Xu W W, Kang L, Chen J, Wu P H 2012 Sci. China: Inform. Sci. 55 64

    [12]

    Jiang L, Miao W, Zhang W, Li N, Lin Z H, Yao Q J, Shi S C, Svechnikov S I, Vakhtomin Y B, Antipov S V, Voronov B M, Kaurova N S, Gol'tsman G N 2006 IEEE Trans. Microw. Theory Tech. 54 2944

    [13]

    Miao W, Zhang W, Zhong J Q, Shi S C, Delorme Y, Lefevre R, Feret A, Vacelet T 2014 Appl. Phys. Lett. 104 052605

    [14]

    Zhang W, Khosropanah P, Gao J R, Kollberg E L, Yngvesson K S, Bansal T, Barends R, Klapwijk T M 2010 Appl. Phys. Lett. 96 111113

    [15]

    Zhou K M, Miao W, Lou Z, Hu J, Li S L, Zhang W, Shi S C, Lefevre R, Delorme Y, Vacelet T 2015 IEEE Trans. Appl. Supercond. 25 2300805

    [16]

    Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156

    [17]

    Gao J R, Hovenier J N, Yang Z Q, Baselmans J J A, Baryshev A, Hajenius M, Klapwijk T M, Adam A J L, Klaassen T O, Williams B S, Kumar S, Hu Q Reno J L 2005 Appl. Phys. Lett. 86 244104

    [18]

    Hubers H W, Pavlov S G Semenov A D, Kohler R, Mahler L, Tredicucci A, Beere H E, Ritchie D A, Linfield E H 2005 Opt. Express 13 5890

    [19]

    Khoscropanah P, Baryshev A, Zhang W, Jellema W, Hovenier J N, Gao J R, Klapwijk T M, Paveliev D G, Williams B S Kumar S, Hu Q, Reno J L, Klein B, Hesler J L 2009 Opt. Lett. 34 2958

    [20]

    Danylov A A Light A R, Waldman J, Erickson N R, Qian X F, Goodhue W D 2012 Opt. Express 20 27908

    [21]

    Barkan A, Tittell F K, Mittleman D M, Dengler R, Siegel P H, Scalari G, Ajili L, Faist J, Beere H E, Linfield E H, Davies A G, Ritchie D A 2004 Opt. Lett. 29 575

    [22]

    Amanti M I, Scalari G, Castellano F, Beck M, Faist J 2010 Opt. Express 18 6390

    [23]

    Ren Y, Hovenier J N, Higgins R, Gao J R, Klapwijk T M, Shi S C, Bell A, Klein B, Williams B S, Kumar S, Hu Q, Reno J L 2010 Appl. Phys. Lett. 97 161105

    [24]

    Ren Y, Hayton D J, Hovenier J N, Cui M, Gao J R, Klapwijl T M, Shi S C, Kao T Y, Hu Q, Reno J L 2012 Appl. Phys. Lett. 101 101111

    [25]

    Ren Y, Hovenier J N, Cui M, Hayton D J, Gao J R, Klapwijl T M, Shi S C, Kao T Y, Hu Q, Reno J L 2012 Appl. Phys. Lett. 100 041111

    [26]

    Richter H, Semenov A D, Pavlov S G, Mahler L, Tredicucci A, Beere H E, Ritchie D A, Il'in K S, Siegel M, Hubers H W 2008 Appl. Phys. Lett. 93 141108

    [27]

    Miao W, Lou Z, Xu G Y, Hu J, Li S L, Zhang W, Zhou K M, Yao Q J, Zhang K, Duan W Y, Shi S C, Colombelli R, Beere H E, Ritchie D A 2015 Opt. Express 23 4453

    [28]

    Xu G Y, Li L H, Isac N, Halioua Y, Davies A G, Linfield E H, Colombelli R 2014 Appl. Phys. Lett. 104 091112

    [29]

    Wanke M C, Young E W, Nordquist C D, Cich M J, Grine A D, Fuller C T, Reno J L, Lee M 2010 Nat. Photon 4 565

    [30]

    Miao W, Zhang W, Zhou K M, Li S L, Zhang K, Duan W Y, Yao Q J, Shi S C 2013 Supercond. Sci. Tech. 26 085005

    [31]

    Irwin K D, Hilton G C 2005 Transition-Edge Sensors (Springer: Cryogenic Particle Detection in Topics in Applied Physics) pp63-150

    [32]

    Zhang W, Zhong J Q, Miao W, Duan W Y, Yao Q J, Shi S C, Martino J, Pajot F, Prele D, Voisin F, Piat M 2015 IEEE Trans. Appl. Supercond. 25 2100204

    [33]

    Zhang Q Y, Wang T S, Liu J S, Dong W H, He G F, Li T F, Zhou X X, Chen W 2014 Chin. Phys. B 23 118502

    [34]

    Datta R, Hunmayr J, Munson C, Austermann J, Beall J, Becker D, Cho H M, Halverson N, Hilton G, Irwin K, Li D, McMahon J, Newburgh L, Nibarger J, Niemack M, Schmitt D, Smith H, Staggs S, van Lanen J, Wollack E 2014 J. Low Temp. Phys. 176 670

计量
  • 文章访问数:  2988
  • PDF下载量:  1029
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-21
  • 修回日期:  2015-06-02
  • 刊出日期:  2015-11-05

超高灵敏度太赫兹超导探测器

  • 1. 中国科学院紫金山天文台, 毫米波和亚毫米波技术实验室, 南京 210008;
  • 2. 中国科学院射电天文重点实验室, 南京 210008
  • 通信作者: 史生才, scshi@pmo.ac.cn
    基金项目: 

    国家重大科研仪器研制项目(批准号: 11127903)、国家自然科学基金重大项目(批准号: 11190012)、中国科学院战略性先导科技专项(批准号: XDB04010300)和国家自然科学基金优秀青年科学基金(批准号: 11422326, 11222329)资助的课题.

摘要: 太赫兹(THz)波段一般定义为0.110 THz的频率区间, 对应波长范围3 mm30 m, 覆盖短毫米波至亚毫米波段(远红外). 尽管人们早已认识到太赫兹波段具有非常重要的科学意义和广泛的应用前景, 但该波段仍然是一个有待全面研究和开发的电磁频率窗口. 因此, 太赫兹波段的天文观测在天体物理及宇宙学研究中具有不可替代的作用, 对于理解宇宙状态和演化具有非常重要的意义. 具有超高灵敏度的太赫兹超导探测器, 已经成为太赫兹波段观测的主要手段. 本文主要阐述了太赫兹超导探测器的基本类型和工作原理, 以及中国科学院紫金山天文台在该领域的主要研究成果和进展.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回