搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响

房超 贾晓鹏 颜丙敏 陈宁 李亚东 陈良超 郭龙锁 马红安

引用本文:
Citation:

高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响

房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安

Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure

Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An
PDF
导出引用
  • 在压力为5.56.2 GPa, 温度为12801450 ℃的条件下, 利用温度梯度法详细考察了氮氢协同掺杂对100晶面生长宝石级金刚石的影响. 实验结果表明伴随合成腔体内氮、氢浓度的升高, 合成条件明显升高, 金刚石生长V形区间上移; 晶体的红外光谱中与氮相关的吸收峰急剧增强, 氮含量可达2000 ppm, 同时位于2850 cm-1和2920 cm-1对应于 sp3杂化 CH 键的对称伸缩振动和反对称伸缩振动的红外特征峰逐渐增强, 表明晶体中既有高的氮含量, 同时又含有氢. 对晶体进行电镜扫描发现, 氮氢协同掺杂对晶体形貌影响明显, 出现拉长的{111}面, 且晶体表面上有三角形生长纹理. 拉曼测试表明, 晶体的峰位向高频偏移、半峰宽变大, 说明氮、氢杂质的进入对晶体内部产生了应力. 本文成功地以{100}晶面为生长面合成出高氮含氢宝石级金刚石单晶, 在探究氮氢共存环境下金刚石生长特性的同时, 也可为理解天然金刚石的形成机理提供帮助.
    As is well known, most natural diamonds usually contain not only aggregated nitrogen up to thousands of ppm but also hydrogen. Therefore, the studies of nitrogen and hydrogen impurities in a diamond are of interest for improving the physical properties of a diamond and solving the problems about natural diamond genesis. From this point of view, in this paper, we choose C3N6H6 powders as a nitrogen and hydrogen source and select high-quality seed crystals with {100} facets as the growth facets. The effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond in the NiMnCo-C system at pressures ranging from 5.5 GPa to 6.2 GPa and temperatures of 1280-1450 ℃ are investigated. Experimental results show that both pressure and temperature, which are the synthesis conditions, increase with the increases of nitrogen and hydrogen content in diamond-growth environment, and the V-shape region of diamond-forming moves up. From the obtained Fourier transform infrared spectra, we notice that there is a significant change of the nitrogen concentration in the synthesized diamond with increasing the nitrogen and hydrogen content in the diamond-growth environment. We calculate the nitrogen concentrations in those diamonds and the results indicate that the highest concentration of nitrogen is up to 2000 ppm. Meanwhile, we notice that the hydrogen associated infrared peaks of 2850 and 2920 cm-1 are gradually enhanced, which shows that both nitrogen and hydrogen are successfully co-doped into the diamond. Scanning electron microscope micrographs show that the {111} face is elongated and has triangulated textures appearing on the surface with nitrogen and hydrogen co-doped into the diamond. This result indicates that the synergistic doping of nitrogen and hydrogen has a great influence on the morphology of {100}-oriented single diamond. From the obtained Raman spectra, we find a shift towards higher frequency of the Raman peak from 1330.23 cm-1 to 1330.40 cm-1 and the full width at half maximum increases from 3.12 cm-1 to 4.66 cm-1 with increasing the concentrations of nitrogen and hydrogen in diamond-growth environment. This is the first report about nitrogen and hydrogen co-doped on 100-oriented single diamond by far. This work can provide a new method to study the influences of nitrogen and hydrogen impurities on diamond synthesis and it will help us to further understand the genesis of natural diamond in the future.
      通信作者: 马红安, maha@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51172089)资助的课题.
      Corresponding author: Ma Hong-An, maha@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51172089).
    [1]

    Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474

    [2]

    Kunuku S, Sankaran K J, Tsai C Y, Chang W H, Tai N H, Leou K C, Lin I N 2013 Appl. Mater. Interfaces 5 7439

    [3]

    Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219

    [4]

    Zhang W J, Meng X M, Chan C Y, Wu Y, Bello I, Lee S T 2003 Appl. Phys. Lett. 82 2622

    [5]

    Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F, Zang C Y 2006 Carbon 44 913

    [6]

    Woods G S 1984 Phil. Mag. B 50 673

    [7]

    de Corte K, Cartigny P, Shatsky V S, de Paepe P, Sobolev N V, Javoy M 1999 In Proceeding of 7th International Kimberlite Conference Cape Town, South Africa, April 13-17, 1999 p174

    [8]

    Evans T 1992 The Properties of Natural and Synthetic Diamond (London: Academic Press) pp259-290

    [9]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [10]

    Zhang Y F, Zang C Y, Ma H A, Liang Z Z, Zhou L, Li S S, Jia X P 2008 Diam. Relat. Mater. 17 209

    [11]

    Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J, Jia X P 2008 Diam. Relat. Mater. 17 180

    [12]

    Palyanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G, Khokhryakov A F 2009 Cryst. Growth. Des. 9 2922

    [13]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [14]

    Zhang Z F, Jia X P, Sun S S, Liu X B, Li Y, Yan B M, Ma H A 2013 Int. J. Refract. Met. Hard Mater. 38 111

    [15]

    Sun S S, Jia X P, Yan B M, Wang F B, Chen N, Li Y D, Ma H A 2014 Cryst. Eng. Commun. 16 2290

    [16]

    Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 物理学报 64 128101]

    [17]

    Liang Z Z, Jia X P, Zang C Y, Zhu P W, Ma H A, Ren G Z 2005 Diam. Relat. Mater. 14 243

    [18]

    Kanda H, Akaishi M, Yamaok S 1999 Diam. Relat. Mater. 8 1441

    [19]

    Briddon P, Jones R, Lister G M S 1988 J. Phys. C: Solid State Phys. 21 L1027

    [20]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]

    [21]

    Connella S H, Sellschopa J P F, Butlerb J E, Macleara R D, Doylea B P, Machi I Z 1998 Diam. Relat. Mater. 7 1714

    [22]

    Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Li Y, Jia X P 2011 Diam. Relat. Mater. 20 468

    [23]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781

    [24]

    Wentorf Jr R H 1971 J. Phys. Chem. 75 1833

    [25]

    Sumiya H, Toda N, Satoh S 2002 J. Crystal Growth 237-239 1281

    [26]

    Kiflawi I, Kanda H, Mainwood A 1998 Diam. Relat. Mater. 7 327

    [27]

    Burns R C, Hansen J O, Spits R A, Sibanda M, Welbourn C M, Welch D L 1999 Diam. Relat. Mater. 8 1433

    [28]

    Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]

  • [1]

    Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474

    [2]

    Kunuku S, Sankaran K J, Tsai C Y, Chang W H, Tai N H, Leou K C, Lin I N 2013 Appl. Mater. Interfaces 5 7439

    [3]

    Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219

    [4]

    Zhang W J, Meng X M, Chan C Y, Wu Y, Bello I, Lee S T 2003 Appl. Phys. Lett. 82 2622

    [5]

    Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F, Zang C Y 2006 Carbon 44 913

    [6]

    Woods G S 1984 Phil. Mag. B 50 673

    [7]

    de Corte K, Cartigny P, Shatsky V S, de Paepe P, Sobolev N V, Javoy M 1999 In Proceeding of 7th International Kimberlite Conference Cape Town, South Africa, April 13-17, 1999 p174

    [8]

    Evans T 1992 The Properties of Natural and Synthetic Diamond (London: Academic Press) pp259-290

    [9]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [10]

    Zhang Y F, Zang C Y, Ma H A, Liang Z Z, Zhou L, Li S S, Jia X P 2008 Diam. Relat. Mater. 17 209

    [11]

    Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J, Jia X P 2008 Diam. Relat. Mater. 17 180

    [12]

    Palyanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G, Khokhryakov A F 2009 Cryst. Growth. Des. 9 2922

    [13]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [14]

    Zhang Z F, Jia X P, Sun S S, Liu X B, Li Y, Yan B M, Ma H A 2013 Int. J. Refract. Met. Hard Mater. 38 111

    [15]

    Sun S S, Jia X P, Yan B M, Wang F B, Chen N, Li Y D, Ma H A 2014 Cryst. Eng. Commun. 16 2290

    [16]

    Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 物理学报 64 128101]

    [17]

    Liang Z Z, Jia X P, Zang C Y, Zhu P W, Ma H A, Ren G Z 2005 Diam. Relat. Mater. 14 243

    [18]

    Kanda H, Akaishi M, Yamaok S 1999 Diam. Relat. Mater. 8 1441

    [19]

    Briddon P, Jones R, Lister G M S 1988 J. Phys. C: Solid State Phys. 21 L1027

    [20]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]

    [21]

    Connella S H, Sellschopa J P F, Butlerb J E, Macleara R D, Doylea B P, Machi I Z 1998 Diam. Relat. Mater. 7 1714

    [22]

    Liu X B, Ma H A, Zhang Z F, Zhao M, Guo W, Li Y, Jia X P 2011 Diam. Relat. Mater. 20 468

    [23]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781

    [24]

    Wentorf Jr R H 1971 J. Phys. Chem. 75 1833

    [25]

    Sumiya H, Toda N, Satoh S 2002 J. Crystal Growth 237-239 1281

    [26]

    Kiflawi I, Kanda H, Mainwood A 1998 Diam. Relat. Mater. 7 327

    [27]

    Burns R C, Hansen J O, Spits R A, Sibanda M, Welbourn C M, Welch D L 1999 Diam. Relat. Mater. 8 1433

    [28]

    Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [3] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [4] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [5] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [7] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [8] 肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜. 合成腔体尺寸对Ib型六面体金刚石单晶生长的影响. 物理学报, 2016, 65(7): 070705. doi: 10.7498/aps.65.070705
    [9] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [10] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] 张贺, 李尚升, 宿太超, 胡美华, 周佑默, 樊浩天, 龚春生, 贾晓鹏, 马红安, 肖宏宇. 温度对Ib型和IIa型金刚石大单晶(100)表面特征的影响. 物理学报, 2015, 64(19): 198103. doi: 10.7498/aps.64.198103
    [12] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征. 物理学报, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [13] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [14] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [15] 胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安. 国产六面顶压机多晶种法合成宝石级金刚石单晶. 物理学报, 2013, 62(18): 188103. doi: 10.7498/aps.62.188103
    [16] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚. 温度梯度法宝石级金刚石的合成及表征. 物理学报, 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [17] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征. 物理学报, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [18] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [19] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究. 物理学报, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [20] 曾雄辉, 赵广军, 徐 军. 温度梯度法生长的Ce: YAlOZr3高温闪烁晶体的光谱分析. 物理学报, 2004, 53(6): 1935-1939. doi: 10.7498/aps.53.1935
计量
  • 文章访问数:  5224
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-04
  • 修回日期:  2015-10-18
  • 刊出日期:  2015-11-05

/

返回文章
返回