搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性硅烯超晶格中电场调制的谷极化和自旋极化

侯海燕 姚慧 李志坚 聂一行

引用本文:
Citation:

磁性硅烯超晶格中电场调制的谷极化和自旋极化

侯海燕, 姚慧, 李志坚, 聂一行

Valley and spin polarization manipulated by electric field in magnetic silicene superlattice

Hou Hai-Yan, Yao Hui, Li Zhi-Jian, Nie Yi-Hang
PDF
导出引用
  • 研究了基于硅烯的静电势超晶格、铁磁超晶格、反铁磁超晶格中谷极化、自旋极化以及赝自旋极化的输运性质,分析了铁磁交换场、反铁磁交换场以及化学势对输运性质的影响,讨论了电场对谷极化、自旋极化以及赝自旋极化的调控作用.结果表明:当3种超晶格的晶格数达到10以上时,在硅烯超晶格中很容易实现100%的谷极化、自旋极化和赝自旋极化,而且通过调节超晶格上的外加电场可以使极化方向发生翻转,从而在硅烯超晶格中实现外电场对谷自由度、自旋自由度以及赝自旋自由度的操控.
    Silicene is a close relative of graphene with a honeycomb lattice structure. However, silicene is unlike the strictly two-dimensional graphene and it has a buckled structure, i.e., the A and B atoms form two sublattice planes with a small vertical separation distance in between. Thus a perpendicular electric field applied to silicene can induce a staggered sublattice potential and different onsite energies in the A and B sublattices. As a result, silicene has a large spin-orbit gap compared with graphene. In addition, the mass of Dirac electrons in silicone is controllable by an external electric field, which leads to several controllable polarized transports in the silicene junction, including valley-, spin-and pseudospin-polarization transport. However, in a single silicone junction the manipulations of polarizations are not ideal. In this work, we consider several silicene-based superlattices in order to effectively control the properties of polarization transport. Using the transfer matrix method, we study valley-, spin-and pseudospin-polarization transport in silicene-based electrostatic potential, ferromagnetic and antiferromagnetic superlattices. The effects of ferromagnetic exchange field, antiferromagnetic exchange field and chemical potential on transport properties are analyzed and the roles of electrostatic field in regulating valley-, spin-and pseudospin-polarization are discussed. The ferromagnetic superlattices result in spin-dependent chemical potential in ferromagnetic regime, while Dirac-like mass depends on the antiferromagnetic exchange field and spin. For electrostatic potential superlattice, the pseudospin-polarization occurs and there is no spin-polarixation nor valley-polarization. The peaks of both the pseudospin conductances are completely separated from each other and the pseudospin is completely polarized in the wide range of the zero field for both sides. For ferromagnetic superlattice, the ferromagnetic exchange field and chemical potential lead to the concurrences of spin-and valley-polarizations. The spin-and valley-polarizations can realize a sudden reversal from -1 to +1 by adjusting the electric field. For antiferromagnetic superlattice, the similar properties of spin-and valley-polarizations are observed. Comparing with the ferromagnetic superlattice, only the polarization order is different when the same change is made in the electric field. These results indicate that when the number of lattices in the superlattice is more than 10, the valley-, spin-and pseudospin-polarization reach 100% easily in silicene-based superlattice. The polarization direction can be reversed by adjusting the electric field, which is helpful in manipulating the freedom degrees of valley, spin and pseudospin in silicene superlattice.
      通信作者: 聂一行, nieyh@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274208)和山西省1331工程(批准号:201542030)资助的课题.
      Corresponding author: Nie Yi-Hang, nieyh@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274208) and the Shanxi 1331 Project, China (Grant No. 201542030).
    [1]

    de Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B, Lay G L 2010 Appl. Phys. Lett. 96 261905

    [2]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Lay G L 2012 Phys. Rev. Lett. 108 155501

    [3]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430

    [4]

    Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K 2012 Phys. Rev. Lett. 109 056804

    [5]

    Ezawa M 2012 New J. Phys. 14 033003

    [6]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502

    [7]

    Ezawa M 2013 Phys. Rev. B 87 155415

    [8]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    [9]

    Rycerz A, Tworzydo J, Beenakker C 2007 Nat. Phys. 3 172

    [10]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343

    [11]

    Tikhonenko F V, Horsell D W, Gorbachev R V, Savchenko A K 2008 Phys. Rev. Lett. 100 056802

    [12]

    Wu G Y, Lue N Y, Chen Y C 2013 Phys. Rev. B 88 125422

    [13]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [14]

    Chantngarm P, Yamada K, Soodchomshom B 2016 Superlattices and Microstructures 94 13

    [15]

    Pham C H, Nguyen V L 2015 J. Phys:Condens. Matter 27 095302

    [16]

    Meyer J C, Girit C O, Crommie M F, Zettl A 2008 Appl. Phys. Lett. 92 123110

    [17]

    Zhang Q, Chen K S, Li J 2016 Sci. Rep. 6 33701

    [18]

    Missault N, Vasilopoulos P, Vargiamidis V, Peeters F M, Duppen B V 2015 Phys. Rev. B 92 195423

    [19]

    Missault N, Vasilopoulos P, Peeters F M, Duppen B V 2016 Phys. Rev. B 93 125425

    [20]

    Niu Z P, Zhang Y M, Dong S H 2015 New J. Phys. 17 073026

    [21]

    Zhang Y, Sun J, Guo Y 2018 J. Phys. D:Appl. Phys. 51 045303

    [22]

    Yokoyama T 2013 Phys. Rev. B 87 241409

    [23]

    Yokoyama T 2014 New J. Phys. 16 085005

    [24]

    Soodchomshom B 2014 J. Appl. Phys. 115 023706

    [25]

    Haugen H, Daniel H H, Arne B 2008 Phys. Rev. B 77 115406

  • [1]

    de Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B, Lay G L 2010 Appl. Phys. Lett. 96 261905

    [2]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Lay G L 2012 Phys. Rev. Lett. 108 155501

    [3]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430

    [4]

    Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K 2012 Phys. Rev. Lett. 109 056804

    [5]

    Ezawa M 2012 New J. Phys. 14 033003

    [6]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502

    [7]

    Ezawa M 2013 Phys. Rev. B 87 155415

    [8]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    [9]

    Rycerz A, Tworzydo J, Beenakker C 2007 Nat. Phys. 3 172

    [10]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343

    [11]

    Tikhonenko F V, Horsell D W, Gorbachev R V, Savchenko A K 2008 Phys. Rev. Lett. 100 056802

    [12]

    Wu G Y, Lue N Y, Chen Y C 2013 Phys. Rev. B 88 125422

    [13]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [14]

    Chantngarm P, Yamada K, Soodchomshom B 2016 Superlattices and Microstructures 94 13

    [15]

    Pham C H, Nguyen V L 2015 J. Phys:Condens. Matter 27 095302

    [16]

    Meyer J C, Girit C O, Crommie M F, Zettl A 2008 Appl. Phys. Lett. 92 123110

    [17]

    Zhang Q, Chen K S, Li J 2016 Sci. Rep. 6 33701

    [18]

    Missault N, Vasilopoulos P, Vargiamidis V, Peeters F M, Duppen B V 2015 Phys. Rev. B 92 195423

    [19]

    Missault N, Vasilopoulos P, Peeters F M, Duppen B V 2016 Phys. Rev. B 93 125425

    [20]

    Niu Z P, Zhang Y M, Dong S H 2015 New J. Phys. 17 073026

    [21]

    Zhang Y, Sun J, Guo Y 2018 J. Phys. D:Appl. Phys. 51 045303

    [22]

    Yokoyama T 2013 Phys. Rev. B 87 241409

    [23]

    Yokoyama T 2014 New J. Phys. 16 085005

    [24]

    Soodchomshom B 2014 J. Appl. Phys. 115 023706

    [25]

    Haugen H, Daniel H H, Arne B 2008 Phys. Rev. B 77 115406

  • [1] 梁世恒, 陆沅, 韩秀峰. 自旋发光二极管研究进展. 物理学报, 2020, 69(20): 208501. doi: 10.7498/aps.69.20200866
    [2] 加孜拉·哈赛恩, 朱恪嘉, 孙飞, 吴艳玲, 石友国, 赵继民. 三重简并拓扑半金属MoP中超快圆偏振光产生和调控光生热电流. 物理学报, 2020, 69(20): 207801. doi: 10.7498/aps.69.20200031
    [3] 俞洋, 张文杰, 赵婉莹, 林贤, 金钻明, 刘伟民, 马国宏. WS2与WSe2单层膜中的A激子及其自旋动力学特性研究. 物理学报, 2019, 68(1): 017201. doi: 10.7498/aps.68.20181769
    [4] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [5] 张华林, 孙琳, 王鼎. 含单排线缺陷锯齿型石墨烯纳米带的电磁性质. 物理学报, 2016, 65(1): 016101. doi: 10.7498/aps.65.016101
    [6] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [7] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究. 物理学报, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [8] 郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤. 氢化铁的自旋极化效应及势能函数. 物理学报, 2014, 63(21): 213101. doi: 10.7498/aps.63.213101
    [9] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性. 物理学报, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [10] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响. 物理学报, 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [11] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究. 物理学报, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [12] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [13] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运. 物理学报, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [14] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究. 物理学报, 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [15] 杨 光, P. V. Santos. 声表面波对GaAs(110)量子阱发光特性的调制. 物理学报, 2006, 55(8): 4327-4331. doi: 10.7498/aps.55.4327
    [16] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析. 物理学报, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [17] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究. 物理学报, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [18] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究. 物理学报, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [19] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [20] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运. 物理学报, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
计量
  • 文章访问数:  5349
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-11
  • 修回日期:  2018-02-02
  • 刊出日期:  2019-04-20

磁性硅烯超晶格中电场调制的谷极化和自旋极化

  • 1. 山西大学理论物理研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;
  • 2. 山西大学极端光学协同创新中心, 太原 030006
  • 通信作者: 聂一行, nieyh@sxu.edu.cn
    基金项目: 国家自然科学基金(批准号:11274208)和山西省1331工程(批准号:201542030)资助的课题.

摘要: 研究了基于硅烯的静电势超晶格、铁磁超晶格、反铁磁超晶格中谷极化、自旋极化以及赝自旋极化的输运性质,分析了铁磁交换场、反铁磁交换场以及化学势对输运性质的影响,讨论了电场对谷极化、自旋极化以及赝自旋极化的调控作用.结果表明:当3种超晶格的晶格数达到10以上时,在硅烯超晶格中很容易实现100%的谷极化、自旋极化和赝自旋极化,而且通过调节超晶格上的外加电场可以使极化方向发生翻转,从而在硅烯超晶格中实现外电场对谷自由度、自旋自由度以及赝自旋自由度的操控.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回