-
非磁/铁磁异质结构中存在很多有趣的演生现象,特别是,铂/铁磁异质结构中的反常霍尔效应是一个研究热点.本文采用脉冲激光沉积技术和射频磁控溅射技术制备出具有原子级接触界面的铂/锰酸锶镧异质结,并对异质结的电输运性能进行了系统的研究.实验发现,铂/锰酸锶镧异质结中存在由铂贡献的反常霍尔效应,这是由磁近邻效应诱导铂表现出铁磁性造成的.反常霍尔电阻随着温度的降低而急剧增加,并且在低于40 K时改变符号.反常霍尔电阻随铂厚度的增加而急剧降低,证实了铂的铁磁性起源于异质结界面.此外,异质结在低外加磁场下可能产生了拓扑霍尔效应,这是由异质结界面处的Dzyaloshinskii-Moriya相互作用诱导产生手性磁畴壁结构引起的.上述研究结果为进一步理解非磁/铁磁异质结构中的电子自旋和电荷输运之间的相互作用提供了实验基础.Many emergent and novel phenomena occur in nonmagnetic/ferromagnet heterostructures. In particular, Pt/ferromagnet heterostructures where the Pt has strong spin-orbit coupling and thus can convert spin current into charge current has attracted a great attention recently. The anomalous Hall effect (AHE) have been found in many Pt/ferromagnet heterostructures. However, the underline physics remains elusive, so it is necessary to find more heterostructure in order to provide more experimental basis. In this paper, we report an investigation of anomalous Hall resistance (AHR) in Pt thin films sputtered on epitaxial La0.67Sr0.33MnO3 (LSMO) ferromagnetic films. High-quality Pt/LSMO heterojunctions were fabricated by pulsed laser deposition and RF-magnetron sputtering. The physical properties of LSMO films were characterized by the measurements of magnetic and transport properties. The AHR mainly contributed by Pt in the Pt/LSMO heterojunction increases sharply with decreasing temperature and changes its sign below 40 K. Furthermore, the AHR decreases sharply with increasing Pt thickness. There facts suggest that the ferromagnetism of Pt originates from interface due to magnetic proximity effect. Interestingly, this heterojunction can exhibit possible signal of topological Hall effect under low applied magnetic field. The above results provide an experimental basis for further understanding of electron spin and charge transport coupling in nonmagnetic/ferromagnetic heterostructures.
-
Keywords:
- anomalous Hall effect /
- magnetic proximity effect /
- topological Hall effect /
- epitaxial growth
-
[1] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790
[2] Jedema F J, Filip A T, Wees B J V 2001 Nature 410 345
[3] Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R, Bauer G E W 2003 Phys. Rev. Lett. 90 187601
[4] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E 2010 Nature 464 262
[5] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y Y, Wu M Z 2011 Phys. Rev. Lett. 107 066604
[6] Rezende S M, Rodriguez S R L, Soares M M, Vilela L L H, Ley D D, Azevedo A 2013 Appl.Phys. Lett. 102 012402
[7] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778
[8] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S, Saitoh E 2010 Nat. Mater. 9 894
[9] Weng H M, Yu R, Hu X, Dai X, Fang Z 2015 Adv. Phys. 64 03227
[10] Takahashi S, Maekawa S 2008 Sci. Technol. Adv. Mater. 9 014105
[11] Miao B F, Huang S Y, Qu D, Chien C L 2014 Phys.Rev. Lett. 112 236601
[12] Althammer M, Meyer S, Nakayama H, Schreier M, Altmannshofer S, Weiler M, Huebl H, Geprags S, Opel M, Gross R, Meier D, Klewe C, Kuschel T, Schmalhorst J M, Reiss G, Shen L M, Gupta A, Chen Y T, Bauer G E W, Saitoh E, Goennenwein S T B 2013 Phys.Rev. B 87 224401
[13] Lu Y M, Choi Y, Ortega C M, Cheng X M, Cai J W, Huang S Y, Sun L, Chien C L 2013 Phys. Rev. Lett. 110 147207
[14] Isasa M, Pinto A B, Velez S, Golmar F, Sanchez F, Hueso L E, Fontcuberta J, Casanova F 2014 Appl. Phys.Lett. 105 142402
[15] Shang T, Zhan Q F, Yang H L, Zuo Z H, Xie Y L, Zhang Y, Liu L P, Wang B M, Wu Y H, Zhang S, Li R W 2015 Phys. Rev. B 92 16
[16] Liao Z L, Li F M, Gao P, Li L, Guo J D, Pan X Q, Jin R, Plummer E W, Zhang J D 2015 Phys. Rev. B 92 125123
[17] Uchida K, Qiu Z Y, Kikkawa T, Lguchi R L, Saitoh E 2015 Appl. Phys. Lett. 106 052405
[18] Putter S, Geprags S, Schlitz R, Althammer M, Erb A, Gross R, Goennenwein S T B 2017 Appl. Phys.Lett. 110 012403
[19] Biswas A,Yang C H, Ramesh R, Jeong M H 2017 PROG. SURF. SCI. 92 02117
[20] Peng R, Xu H C, Xia M, Zhao J F, Xie X, Xu D F, Xie B P, Feng D L 2014 Appl. Phys. Lett. 104 081606
[21] Snyder G J, Hiskes R, DiCarolis S, Beasley M R, Geballe T H 1996 Phys. Rev. B 53 14434
[22] Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q, Chien C L 2012 Phys. Rev. Lett. 109 107204
[23] Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovi A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898
[24] Zhang S, Zhang S S L 2009 Phys. Rev. Lett. 102 086601
[25] Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202
[26] Belabbes A, Bihlmayer G, Bechstedt F, Blügel S, Manchon A 2016 Phys. Rev. Lett. 117 247202
[27] Meng K K, Zhao X P, Liu P F, Liu Q, Wu Y, Li Z P, Chen J K, Miao J, Xu X G, Zhao J H, Jiang Y 2018 Phys. Rev. B 97 060407
计量
- 文章访问数: 205
- PDF下载量: 4
- 被引次数: 0