-
基于钙钛矿材料优异的光电特性, 钙钛矿太阳电池的转换效率迅速提高. 但制约钙钛矿太阳电池性能的因素依然存在, 例如: 界面问题、稳定性问题等. 通过在载流子传输层/电极及载流子传输层/光吸收层之间引入能带结构合适的缓冲层, 可有效改善界面间的能带失配、载流子复合及化学反应等问题, 进而提高钙钛矿电池中的电荷分离及收集效率, 实现界面及稳定性问题的有效改善. 本文总结了当前钙钛矿太阳电池中引入的缓冲层材料,全面分析了不同缓冲层材料钝化空穴传输层/阳极、电子传输层/阴极、空穴传输层/吸收层及电子传输层/吸收层间界面的机理, 对比了不同缓冲层材料对电池性能的影响, 总结了缓冲层材料在钙钛矿电池中的作用, 最后指出了钙钛矿电池中各界面缓冲层材料的研究趋势及发展方向.Based on the excellent optoelectronic properties of organic-inorganic hybrids perovskite materials, the power conversion efficiency of perovskite solar cells (PSCs) is rapidly increasing. However, factors that restrict the performance of PSCs still exist, such as interface and stability problems. Problems, such as band mismatching, carrier recombination and chemical reaction between interfaces, could be alleviated by introducing a buffer layer (BL) with a proper band structure between different layers. Moreover, stability as well as charge separation and collection could also be efficiently improved in PSCs. In this paper, an overview of the most contemporary strategies of BLs was provided. The passivation mechanism of BLs at different interfaces are highlighted and discussed in detail. Furthermore, the performances of recently developed BLs in PSCs are compared. Finally, we elaborate on the remaining challenges and future directions for the development of BLs to achieve high-efficiency and high-stability PSCs.
-
Keywords:
- perovskite solar cell /
- interface /
- stability /
- buffer layer
[1] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar
[2] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar
[3] Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar
[4] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, SeoK S I 2015 Science 348 1234Google Scholar
[5] Ponseca C S, Savenije T J, Abdellah M, Zheng K B, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstrom V 2014 J. Am. Chem. Soc. 136 5189Google Scholar
[6] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[7] Brenes R, Guo D Y, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D 2017 Joule 1 155Google Scholar
[8] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[9] Best research-cell efficiencies http://www.nrel.gov/pv/assets/ images/efficiencychart.png
[10] Qiu J H, Yang S H 2019 Chem. Rec. 20 209
[11] Wang B, Iocozzia J, Zhang M, Ye M D, Yan S C, Jin H L, Wang S, Zou Z G, Lin Z Q 2019 Chem. Soc. Rev. 48 4854Google Scholar
[12] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar
[13] Chen Y J, Li M H, Chen P 2018 Sci. Rep. 8 7646Google Scholar
[14] C ai, C, Zhou K, Guo H Y, Pei Y, Hu Z Y, Zhang J, Zhu Y J 2019 Electrochim. Acta 312 100Google Scholar
[15] Xiao D, Li X, Wang D M, Li Q, Shen K, Wang D L 2017 Sol. Energ. Mat. Sol. C. 169 61Google Scholar
[16] Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D 2016 Adv. Mater. 28 3937Google Scholar
[17] Jin T Y, Li W, Li Y Q, Luo Y X, Shen Y, Cheng L P, Tang J X 2018 Adv. Opt. Mater. 6 1801153Google Scholar
[18] Nouri E, Wang Y L, Chen Q, Xu J J, Paterakis G, Dracopoulos V, Xu Z X, Tasis D, Mohammadi M R, Lianos P 2017 Electrochim. Acta 233 36Google Scholar
[19] Galatopoulos F, Papadas I T, Armatas, G S, Choulis S A 2018 Adv. Mater. Interfaces 5 1800280Google Scholar
[20] Li Y Q, Qi X, Liu G H, Zhang Y Q, Zhu N, Zhang Q H, Guo X, Wang D, Hu H Z, Chen Z J 2019 Org. Electron. 65 19Google Scholar
[21] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016 Energ Environ. Sci. 9 81Google Scholar
[22] Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 ChemSusChem 9 302Google Scholar
[23] Chatterjee S, Pal A J 2016 J. Phys. Chem. C 120 1428Google Scholar
[24] Yu W L, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L F, Hedhili M N, Li Y Y, Wu K W, Wang X B, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar
[25] Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar
[26] L in, W K, Su S H, Yeh M C, Chen C Y, Yokoyama M 2017 Vacuum 140 82Google Scholar
[27] Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711Google Scholar
[28] Matteocci, F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C, Di Carlo A, 2015 ACS Appl. Mater. Interfaces 7 26176Google Scholar
[29] Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 ACS Nano 10 6306Google Scholar
[30] Cacovich S, Cina L, Matteocci F, Divitini G, Midgley P A, Di Carlo A, Ducati C 2017 Nanoscale 9 4700Google Scholar
[31] Zhang X W, Liang C J, Sun M J, Zhang H M, Ji C, Guo Z B, Xu Y J, Sun F L, Song Q, He Z Q 2018 Phys. Chem. Chem. Phys. 20 7395Google Scholar
[32] Lee M, Ko Y, Min B K, Jun Y 2016 ChemSusChem 9 31Google Scholar
[33] Wang F J, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K 2016 Nanoscale 8 11882Google Scholar
[34] Ghani F, Kristen J, Riegler H 2012 J. Chem. Eng. Data 57 439Google Scholar
[35] Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587Google Scholar
[36] Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Castillo A E D, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar
[37] Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M 2019 Sci. Bull. 64 507Google Scholar
[38] Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar
[39] Jia X, Zuo C T, Tao S X, Sun K, Zhao Y X, Yang S F, Cheng M, Wang M K, Yuan Y B, Yang J L, Gao F, Xing G C, Wei Z H, Zhang L J, Yip H L, Liu M Z, Shen Q, Yin L W, Han L Y, Liu S Z, Wang L Z, Luo J S, Tan H R, Jin Z W, Ding L M 2019 Sci. Bull. 64 1532Google Scholar
[40] Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar
[41] Fedros G, Ioannis T P, Gerasimos S A, Stelion A C 2018 Advanced Materials Interfaces 5 1800280
[42] Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z 2015 J. Am. Chem. Soc. 137 2674Google Scholar
[43] Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar
[44] Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1701683Google Scholar
[45] Liu X Y, Yang X D, Liu X S, Zhao Y N, Chen J Y, Gu Y Z 2018 Appl. Phys. Lett. 113 203903Google Scholar
-
图 6 Perovskite/PCBM和Perovskite/PCBM/Zr(Ac)4薄膜的AFM图及其表面I、N、Pb元素含量的XPS图谱; 有无Zr(Ac)4缓冲层钙钛矿太阳电池的最优电池J-V图[30] (a) Perovskite/PCBM; (b) Perovskite/PCBM/Zr(Ac)4; (c) XPS图谱; (d) J-V图
Fig. 6. AFM diagram of Perovskite/PCBM and Perovskite/PCBM/Zr(Ac)4 films and XPS spectra showing the different amount of I, N and Pb elements on the films surface; the J-V characteristics of the optimized device perovskite solar cell with and without Zr(Ac)4 buffer layer[30]: (a) Perovskite/PCBM; (b) Perovskite/PCBM/Zr(Ac)4; (c) XPS spectra; (d) J-V diagram.
图 7 ITO/SnO2/perovskite与ITO/PEI/SnO2/perovskite的AFM图、PL图及有无PEI缓冲层最优电池的入射光子-电流转换效率图(IPCE)[20] (a) ITO/SnO2/perovskite; (b) ITO/PEI/SnO2/perovskite; (c) PL图; (d) IPCE图
Fig. 7. The AFM images and the steady state PL spectra of ITO/PEI/SnO2/perovskite and ITO/SnO2/perovskite, and the IPCE spectra of the champion devices with and without PEI buffer layer[20]: (a) ITO/SnO2/perovskite; (b) ITO/PEI/SnO2/perovskite; (c) PL spectra; (d) IPCE spectra.
-
[1] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar
[2] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar
[3] Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar
[4] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, SeoK S I 2015 Science 348 1234Google Scholar
[5] Ponseca C S, Savenije T J, Abdellah M, Zheng K B, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstrom V 2014 J. Am. Chem. Soc. 136 5189Google Scholar
[6] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[7] Brenes R, Guo D Y, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D 2017 Joule 1 155Google Scholar
[8] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[9] Best research-cell efficiencies http://www.nrel.gov/pv/assets/ images/efficiencychart.png
[10] Qiu J H, Yang S H 2019 Chem. Rec. 20 209
[11] Wang B, Iocozzia J, Zhang M, Ye M D, Yan S C, Jin H L, Wang S, Zou Z G, Lin Z Q 2019 Chem. Soc. Rev. 48 4854Google Scholar
[12] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar
[13] Chen Y J, Li M H, Chen P 2018 Sci. Rep. 8 7646Google Scholar
[14] C ai, C, Zhou K, Guo H Y, Pei Y, Hu Z Y, Zhang J, Zhu Y J 2019 Electrochim. Acta 312 100Google Scholar
[15] Xiao D, Li X, Wang D M, Li Q, Shen K, Wang D L 2017 Sol. Energ. Mat. Sol. C. 169 61Google Scholar
[16] Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D 2016 Adv. Mater. 28 3937Google Scholar
[17] Jin T Y, Li W, Li Y Q, Luo Y X, Shen Y, Cheng L P, Tang J X 2018 Adv. Opt. Mater. 6 1801153Google Scholar
[18] Nouri E, Wang Y L, Chen Q, Xu J J, Paterakis G, Dracopoulos V, Xu Z X, Tasis D, Mohammadi M R, Lianos P 2017 Electrochim. Acta 233 36Google Scholar
[19] Galatopoulos F, Papadas I T, Armatas, G S, Choulis S A 2018 Adv. Mater. Interfaces 5 1800280Google Scholar
[20] Li Y Q, Qi X, Liu G H, Zhang Y Q, Zhu N, Zhang Q H, Guo X, Wang D, Hu H Z, Chen Z J 2019 Org. Electron. 65 19Google Scholar
[21] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016 Energ Environ. Sci. 9 81Google Scholar
[22] Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 ChemSusChem 9 302Google Scholar
[23] Chatterjee S, Pal A J 2016 J. Phys. Chem. C 120 1428Google Scholar
[24] Yu W L, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L F, Hedhili M N, Li Y Y, Wu K W, Wang X B, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar
[25] Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar
[26] L in, W K, Su S H, Yeh M C, Chen C Y, Yokoyama M 2017 Vacuum 140 82Google Scholar
[27] Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711Google Scholar
[28] Matteocci, F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C, Di Carlo A, 2015 ACS Appl. Mater. Interfaces 7 26176Google Scholar
[29] Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 ACS Nano 10 6306Google Scholar
[30] Cacovich S, Cina L, Matteocci F, Divitini G, Midgley P A, Di Carlo A, Ducati C 2017 Nanoscale 9 4700Google Scholar
[31] Zhang X W, Liang C J, Sun M J, Zhang H M, Ji C, Guo Z B, Xu Y J, Sun F L, Song Q, He Z Q 2018 Phys. Chem. Chem. Phys. 20 7395Google Scholar
[32] Lee M, Ko Y, Min B K, Jun Y 2016 ChemSusChem 9 31Google Scholar
[33] Wang F J, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K 2016 Nanoscale 8 11882Google Scholar
[34] Ghani F, Kristen J, Riegler H 2012 J. Chem. Eng. Data 57 439Google Scholar
[35] Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587Google Scholar
[36] Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Castillo A E D, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar
[37] Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M 2019 Sci. Bull. 64 507Google Scholar
[38] Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar
[39] Jia X, Zuo C T, Tao S X, Sun K, Zhao Y X, Yang S F, Cheng M, Wang M K, Yuan Y B, Yang J L, Gao F, Xing G C, Wei Z H, Zhang L J, Yip H L, Liu M Z, Shen Q, Yin L W, Han L Y, Liu S Z, Wang L Z, Luo J S, Tan H R, Jin Z W, Ding L M 2019 Sci. Bull. 64 1532Google Scholar
[40] Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar
[41] Fedros G, Ioannis T P, Gerasimos S A, Stelion A C 2018 Advanced Materials Interfaces 5 1800280
[42] Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z 2015 J. Am. Chem. Soc. 137 2674Google Scholar
[43] Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar
[44] Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1701683Google Scholar
[45] Liu X Y, Yang X D, Liu X S, Zhao Y N, Chen J Y, Gu Y Z 2018 Appl. Phys. Lett. 113 203903Google Scholar
计量
- 文章访问数: 22096
- PDF下载量: 1006
- 被引次数: 0