搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用

韩志斌 彭朝晖 刘雄厚

引用本文:
Citation:

深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用

韩志斌, 彭朝晖, 刘雄厚

Analysis of sound field distribution of angle dimension in deep ocean bottom bounce area and its application to active sonar vertical beam pitch

Han Zhi-Bin, Peng Zhao-Hui, Liu Xiong-Hou
PDF
HTML
导出引用
  • 深海海底反射区的声场干涉导致能量起伏, 存在不连续的若干声纳可探测区. 主动声纳探测海底反射区目标时, 必须建立起声纳可探测区与波束俯仰角间的量化关系, 通过合理选择最优发射波束俯仰角, 才能使其对准声纳可探测区. 本文通过理论分析和数值仿真, 指出海底反射区离散的声纳可探测区的形成与不同掠射角声线能量周期性起伏直接相关, 当主动声纳波束俯仰角与某个声线能量峰值对应的出射角一致时, 可保证在一个对应的声纳可探测区内获得高的发射阵增益. 在此基础上, 通过声线干涉理论建立了声线能量峰值和出射角的量化关系, 并提出一种脉冲串信号形式, 包含多个可对准各声线能量峰值的子脉冲, 每个子脉冲可保证照射到一个声纳可探测区, 整个脉冲串发射时可在海底反射区的全部声纳可探测区内均取得高的发射阵增益. 经仿真验证, 该方法探测效果好, 稳健性高, 具有良好的应用前景.
    In the deep ocean environment, the sound energy from the direct path is very hard to illuminate a target located in the shadow zone. To solve the problem, the bottom bouncing technique, in which the vertical transmitting beamforming and the bottom bouncing are used to illuminate the target in the shadow zone, provides a potential way. However, due to the sound field interference in the bottom bouncing area in the deep ocean environment, the sound energy in the bottom bouncing area is fluctuant, which produces several discrete detectable areas. In order to detect underwater targets in these areas when using an active sonar with a transmitting vertical linear array, the selecting of reasonable vertical transmitting beam angles is necessary. Therefore, the relationship between the discrete detectable area and the transmitting vertical angle in deep ocean is very important for the active sonar using a transmitting vertical linear array. In this paper, it is shown that the sound field fluctuation in the bottom bouncing area is due to the energy fluctuation of the rays having different grazing angles. And the active sonar can achieve high noise gain in a detectable area when the vertical transmitting angle is equal to the grazing angle of the sound ray with the peak energy. To obtain a high noise gain of the active sonar using the vertical transmitting array, an efficient method to estimate the grazing angle of sound rays with peak energy according to the sound field distribution of angle dimension is proposed, which is helpful for selecting a group of best vertical transmitting angles. Meanwhile, a transmitting signal which contains a group of subpulses is designed. Furthermore, each subpulse is applied to the whole transmitting array by using the vertical steering to illuminate a certain detectable area in the bottom bouncing area. By doing so, a subpulse steered to the previously selected vertical angle will ensure a high transmitting array gain in a detectable area, and all of pulses will illuminate the whole detectable areas with high array gains almost simultaneously. Numerical simulations show that the proposed method is stable and efficient, and has good noise gain in the shadow zone (where almost no direct path exists) in the deep ocean environment.
      通信作者: 韩志斌, xuanhao5596@163.com
    • 基金项目: 国家自然科学基金(批准号: 11434012)资助的课题
      Corresponding author: Han Zhi-Bin, xuanhao5596@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11434012)
    [1]

    Udovydchenkov I A, Stephen R A, Duda T F, Bolmer S T, Worcester P F, Dzieciuch M A, Mercer J A, Andrew R K, Howe B M 2012 J. Acoust. Soc. Am. 132 2224Google Scholar

    [2]

    Chuprov S D, Maltsev N E 1981 Doklady Akademii Nauk SSSR 257 474

    [3]

    翁晋宝, 李风华, 郭永刚 2016 声学学报 41 330

    Weng J B, Li F H, Guo Y G 2016 Acta Acustica 41 330

    [4]

    段睿 2016 博士学位论文 (西安: 西北工业大学)

    Duan R 2016 Ph.D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [5]

    翁晋宝 2015 博士学位论文 (北京: 中国科学院大学)

    Weng J B 2015 Ph.D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [6]

    Harrison C H 2011 J. Acoust. Soc. Am. 129 2863Google Scholar

    [7]

    Colosi J A, Duda T F, Morozov A K 2012 J. Acoust. Soc. Am. 131 1749Google Scholar

    [8]

    Finn B J, William A K, Michael B P, Henrik S 2000 Computational Ocean Acoustics (Vol. 2) (New York: AIP Press/Springer) p340

    [9]

    郭晓乐, 杨坤德, 马远良, 杨秋龙 2016 物理学报 65 214302Google Scholar

    Guo X L, Yang K D, Ma Y L 2016 Acta Phys. Sin. 65 214302Google Scholar

    [10]

    张仁和, 何怡, 刘红 1994 声学学报 9 1

    Zhang R H, He Y, Liu H 1994 Acta Acustica 9 1

    [11]

    Tindle C T, Guthrie K M 1974 J. Sound Vib. 34 291Google Scholar

    [12]

    Kamel A, Felsen L B 1982 J. Acoust. Soc. Am. 71 1445Google Scholar

    [13]

    林巨, 赵越, 王欢, 陈鹏 2015 南京大学学报: 自然科学 51 1223

    Lin J, Zhao Y, Wang H, Chen P 2015 J. Nanjing Univ. Nat. Sci. 51 1223

    [14]

    韩志斌, 彭朝晖, 刘扬 2019 应用声学 38 569Google Scholar

    Han Z B, Peng Z H, Liu Y 2019 Journal of Applied Acoustic 38 569Google Scholar

    [15]

    吴俊楠, 周士弘, 张岩 2016 中国科学: 物理学 力学 天文学 46 094311Google Scholar

    Wu J N, Zhou S H, Zhang Y 2016 Sci. Sin. Phys. Mech. Astron. 46 094311Google Scholar

    [16]

    Wu J N, Zhou S H, Peng Z H, Zhang Y, Zhang R H 2016 Chin. Phys. B 25 124311Google Scholar

    [17]

    刘伯胜, 雷家煜 1993 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第106页

    Liu B S, Lei J Y 1993 Principles of Underwater Sound (Haerbin: Haerbin Engineering University Press) p106 (in Chinese)

    [18]

    谢磊, 孙超, 刘雄厚, 蒋光禹 2016 物理学报 65 144303Google Scholar

    Xie L, Sun C, Liu X H, Jiang G Y 2016 Acta Phys. Sin. 65 144303Google Scholar

    [19]

    杨坤德, 孙超 2007 电声技术 31 4Google Scholar

    Yang K D, Sun C, 2007 Audio Eng. 31 4Google Scholar

    [20]

    宋俊 2005 博士学位论文 (长沙: 国防科技大学)

    Song J 2005 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

  • 图 1  典型深海Munk声道下声传播损失随距离和接收深度变化情况

    Fig. 1.  Transmission loss variety with the change of distance and receiver depth in Munk sound channel.

    图 2  典型深海Munk声道下接收深度固定时声传播损失随距离的变化

    Fig. 2.  Transmission loss variety with the change of distance in Munk sound channel when the receiver depth is fixed.

    图 3  典型深海Munk声道下声场的角谱域分布

    Fig. 3.  Acoustic field distribution of angle dimension in Munk sound channel.

    图 4  不同简正波(声线)簇形成的声场 (a) 1—120阶简正波(出射角0°—9.5°的声线)叠加声场; (b) 121—216阶简正波(出射角9.5°—18.2°的声线)叠加声场; (c) 217—314阶简正波(出射角18.2°—27.6°声线)叠加声场; (d) 315—354阶简正波(出射角27.6°—31.7°声线)叠加声场

    Fig. 4.  Acoustic field formed by different normal mode (ray) clusters: (a) Acoustic field formed by normal mode 1 to normal mode 120 (rays with emanating angle from 0° to 9.5°); (b) acoustic field formed by normal mode 121 to normal mode 216 (rays with ema-nating angle from 9.5° to 18.2°); (c) acoustic field formed by normal mode 217 to normal mode 314 (rays with emanating angle from 18.2° to 27.6°); (d) acoustic field formed by normal mode 315 to norm al mode 354 (rays with emanating angle from 27.6° to 31.7°).

    图 5  角谱域上20°掠射角对应的两种声线示意图

    Fig. 5.  Sketch map of two types of rays with the value of 20° in angle dimension.

    图 6  声源频率变化时声场角谱域分布WKBZ仿真结果与理论预报结果比较(声源深度50 m) (a) 100 Hz; (b) 200 Hz; (c) 300 Hz

    Fig. 6.  Comparison of WKBZ simulation and theoretical prediction about acoustic field distribution of angle dimension when source frequency varies (source depth is 50 m): (a) 100 Hz; (b) 200 Hz; (c) 300 Hz.

    图 7  声源深度变化时声场角谱域分布WKBZ仿真结果与理论预报结果比较(声源频率100 Hz) (a) 30 m; (b) 50 m; (c) 80 m

    Fig. 7.  Comparison of WKBZ simulation and theoretical prediction about acoustic field distribution of angle dimension when source depth varies (source frequency is 100 Hz): (a) 30 m; (b) 50 m; (c) 80 m.

    图 8  声速梯度变化时声场角谱域分布WKBZ仿真结果和理论预报结果比较 (a) 不同跃变层声速梯度下声速剖面; (b) 结果比较

    Fig. 8.  Comparison of WKBZ simulation and theoretical prediction about acoustic field distribution of angle dimension when sound velocity gradient varies: (a) Sound velocity profiles when sound velocity gradient varies; (b) comparison of results.

    图 9  声道轴深度变化时声场角谱域分布WKBZ仿真结果和理论预报结果比较 (a)不同声道轴深度下声速剖面; (b) 结果比较

    Fig. 9.  Comparison of WKBZ simulation and theoretical prediction about acoustic field distribution of angle dimension when channel axis depth varies: (a) Sound velocity profiles when channel axis depth varies; (b) comparison of results.

    图 10  海深变化时声场角谱域分布WKBZ仿真结果和理论预报结果比较 (a)不同海深下声速剖面; (b)结果比较

    Fig. 10.  Comparison of WKBZ simulation and theoretical prediction about acoustic field distribution of angle dimension when sea depth varies: (a) Sound velocity profiles when sea depth varies; (b) comparison of results.

    图 11  基于声场角谱域分布结构的主动声纳发射脉冲串信号设计

    Fig. 11.  Pulse signal design of active sonar based on acoustic field distribution of angle dimension.

    图 12  声场角谱域分布结构

    Fig. 12.  Acoustic field distribution of angle dimension.

    图 13  本文方法和随机设置方法阵增益比较 (a) 不同方法阵增益比较; (b) 声传播损失及声纳可探测区分布情况

    Fig. 13.  Array gain comparision between method of this article and the method of random setting: (a) Array gains of different methods; (b) transmission loss and distribution of detectable areas.

    表 1  本文方法和传统随机设置波束俯仰角方法阵增益比较数据表

    Table 1.  Array gain comparison data form between method of this article and the method of random setting.

    可探测区1可探测区2可探测区3可探测区4所有可探测区(15—50 km)
    本文方法4.56.05.78.06.4
    10º俯仰角, 传统方法–10.4–14.03.77.0–2.4
    20º俯仰角, 传统方法1.75.73.51.23.3
    下载: 导出CSV
  • [1]

    Udovydchenkov I A, Stephen R A, Duda T F, Bolmer S T, Worcester P F, Dzieciuch M A, Mercer J A, Andrew R K, Howe B M 2012 J. Acoust. Soc. Am. 132 2224Google Scholar

    [2]

    Chuprov S D, Maltsev N E 1981 Doklady Akademii Nauk SSSR 257 474

    [3]

    翁晋宝, 李风华, 郭永刚 2016 声学学报 41 330

    Weng J B, Li F H, Guo Y G 2016 Acta Acustica 41 330

    [4]

    段睿 2016 博士学位论文 (西安: 西北工业大学)

    Duan R 2016 Ph.D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [5]

    翁晋宝 2015 博士学位论文 (北京: 中国科学院大学)

    Weng J B 2015 Ph.D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [6]

    Harrison C H 2011 J. Acoust. Soc. Am. 129 2863Google Scholar

    [7]

    Colosi J A, Duda T F, Morozov A K 2012 J. Acoust. Soc. Am. 131 1749Google Scholar

    [8]

    Finn B J, William A K, Michael B P, Henrik S 2000 Computational Ocean Acoustics (Vol. 2) (New York: AIP Press/Springer) p340

    [9]

    郭晓乐, 杨坤德, 马远良, 杨秋龙 2016 物理学报 65 214302Google Scholar

    Guo X L, Yang K D, Ma Y L 2016 Acta Phys. Sin. 65 214302Google Scholar

    [10]

    张仁和, 何怡, 刘红 1994 声学学报 9 1

    Zhang R H, He Y, Liu H 1994 Acta Acustica 9 1

    [11]

    Tindle C T, Guthrie K M 1974 J. Sound Vib. 34 291Google Scholar

    [12]

    Kamel A, Felsen L B 1982 J. Acoust. Soc. Am. 71 1445Google Scholar

    [13]

    林巨, 赵越, 王欢, 陈鹏 2015 南京大学学报: 自然科学 51 1223

    Lin J, Zhao Y, Wang H, Chen P 2015 J. Nanjing Univ. Nat. Sci. 51 1223

    [14]

    韩志斌, 彭朝晖, 刘扬 2019 应用声学 38 569Google Scholar

    Han Z B, Peng Z H, Liu Y 2019 Journal of Applied Acoustic 38 569Google Scholar

    [15]

    吴俊楠, 周士弘, 张岩 2016 中国科学: 物理学 力学 天文学 46 094311Google Scholar

    Wu J N, Zhou S H, Zhang Y 2016 Sci. Sin. Phys. Mech. Astron. 46 094311Google Scholar

    [16]

    Wu J N, Zhou S H, Peng Z H, Zhang Y, Zhang R H 2016 Chin. Phys. B 25 124311Google Scholar

    [17]

    刘伯胜, 雷家煜 1993 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第106页

    Liu B S, Lei J Y 1993 Principles of Underwater Sound (Haerbin: Haerbin Engineering University Press) p106 (in Chinese)

    [18]

    谢磊, 孙超, 刘雄厚, 蒋光禹 2016 物理学报 65 144303Google Scholar

    Xie L, Sun C, Liu X H, Jiang G Y 2016 Acta Phys. Sin. 65 144303Google Scholar

    [19]

    杨坤德, 孙超 2007 电声技术 31 4Google Scholar

    Yang K D, Sun C, 2007 Audio Eng. 31 4Google Scholar

    [20]

    宋俊 2005 博士学位论文 (长沙: 国防科技大学)

    Song J 2005 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

  • [1] 魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯. 复合相位调控的波束转向可控反射型超表面. 物理学报, 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [2] 周玉媛, 孙超, 谢磊, 刘宗伟. 基于波束-波数域非相干匹配的浅海运动声源深度估计方法. 物理学报, 2023, 72(8): 084302. doi: 10.7498/aps.72.20222361
    [3] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] 安腾远, 丁霄. 基于角谱域和时间反演的任意均匀场的生成方法. 物理学报, 2023, 72(18): 180201. doi: 10.7498/aps.72.20230418
    [5] 朱启轩, 孙超, 刘雄厚. 利用海底弹射区角度-距离干涉结构特征实现声源深度估计. 物理学报, 2022, 71(18): 184301. doi: 10.7498/aps.71.20220746
    [6] 肖圣杰, 林敏, 赵柏, 林志, 程铭. 智能反射面辅助的星地融合网络鲁棒安全波束成形算法. 物理学报, 2022, 71(7): 078401. doi: 10.7498/aps.71.20212032
    [7] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演. 物理学报, 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [8] 杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐. 基于宽波束磁电偶极子天线的宽角扫描线性相控阵列. 物理学报, 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [9] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [10] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究. 物理学报, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [11] 侯倩男, 吴金荣. 浅海小掠射角的海底界面声反向散射模型的简化. 物理学报, 2019, 68(4): 044301. doi: 10.7498/aps.68.20181475
    [12] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [14] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [15] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [16] 梁国龙, 陶凯, 王晋晋, 范展. 声矢量阵宽带目标波束域变换广义似然比检测算法. 物理学报, 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [17] 范展, 梁国龙, 王晋晋, 王燕, 陶凯. 一种高效的自适应波束域变换方法及应用研究. 物理学报, 2015, 64(9): 094304. doi: 10.7498/aps.64.094304
    [18] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计. 物理学报, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [19] 颜扬治, 丁志华, 王玲, 沈毅. 联合谱域与深度域光谱相位显微方法. 物理学报, 2013, 62(16): 164204. doi: 10.7498/aps.62.164204
    [20] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法. 物理学报, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
计量
  • 文章访问数:  9855
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-29
  • 修回日期:  2020-03-31
  • 刊出日期:  2020-06-05

/

返回文章
返回