搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VO2的太赫兹各向异性编码超表面

汪静丽 杨志雄 董先超 尹亮 万洪丹 陈鹤鸣 钟凯

引用本文:
Citation:

基于VO2的太赫兹各向异性编码超表面

汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯

VO2 based terahertz anisotropic coding metasurface

Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai
PDF
HTML
导出引用
  • 设计了一种3层结构的太赫兹编码超表面, 其顶部是嵌入VO2的金属十字架结构, 中间是聚酰亚胺, 底部为纯金属. 利用该编码超表面的各向异性特点, 可以实现对正交极化波(x极化波和y极化波)的独立调控; 通过在编码超表面中引入VO2材料, 改变其相变状态, 可进一步增加调控的灵活性. 对设计的超表面进行建模仿真和分析, 结果表明: 对于垂直入射的1 THz正交极化波, VO2处于绝缘态时, 设计的超表面可视为2 bit的各向异性编码超表面, 产生模式为1和2的涡旋波; VO2处于金属态时, 设计的超表面可视为1 bit的各向异性编码超表面, 产生对称的2束反射波和4束反射波. 所提出的各向异性和相变材料结合的方法, 实现了同一超表面上产生多种不同形式太赫兹波束的功能, 一定程度上解决了超表面调控太赫兹波形式单一的问题, 为实现能够灵活应用于多种场景的多功能编码超表面提供了参考.
    Terahertz (THz) wave has the advantages of high resolution, large information capacity, easy beam focusing, etc, and can be used in the fields of communication, radar, detection and others. Firstly, as a two-dimensional artificial electromagnetic metamaterial, the coding metasurface is proposed in the microwave band. It uses the digital coding of the electromagnetic wave phase to adjust electromagnetic waves. Subsequently, as an important way to regulate THz, the metasurface extends to terahertz frequency band and becomes a research hotspot. In this paper, we design a coding metasurface based on vanadium dioxide (VO2) with anisotropic characteristics. It is composed of three layers, with a metal cross structure embedded in VO2 at the top, polyimide in the middle, and pure metal at the bottom. The design of the cross shaped structure makes the coding metasurface unit anisotropic, which can provide complete and independent control of the orthogonally linearly polarized incident waves. The pure metal structure at the bottom can provide higher reflection amplitude for the incident wave. And VO2 is introduced into the coding metasurface. As a phase change material, VO2 can switch its properties between the insulating state and the metallic state, which further increases the flexibility of coding metasurface to regulate THz wave. Eight different coding metasurface units are designed in this work. They can be arranged according to a reasonable coding sequence to form a coding metasurface, which consisits of 20×20 metasurface units with an overall size of 2.4 mm × 2.4 mm. Its coding sequence will be changed with the phase of VO2, thus forming a corresponding 1 bit or 2 bit coding metasurface, and the generated beam form changes accordingly. The finite-difference time domain method is used for modeling and implementing simulation, and the results are as follows. The 1-THz orthogonal linearly polarized wave is vertically incident on the coding metasurface. When VO2 is in the insulating state, the designed metasurface can be regarded as an anisotropic 2 bit coding metasurface to generate dual-polarization orbital angular momentum (OAM) vortex beams. The x-polarized vortex wave has an OAM mode number of 2, and the y-polarized vortex wave possesses an OAM mode number of 1. When VO2 is in the metallic state, the designed metasurface can be regarded as an anisotropic 1 bit coding metasurface to generate dual-polarization symmetrical beams. Four reflected waves are generated by incident x-polarized waves, and two reflected waves are created by incident y-polarized waves. The proposed method of combining anisotropy material and phase change material realizes the function of generating multiple THz beams in different forms on the same metasurface. The present results provide a reference for the implementation of multi-functional coding metasurface that can be flexibly applied to multiple scenes.
      通信作者: 汪静丽, jlwang@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174199, 61571237)、江苏省自然科学基金(批准号: BK20221330, BK20151509)和多功能太赫兹天线的研究横向课题(批准号: 2021外323)资助的课题
      Corresponding author: Wang Jing-Li, jlwang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174199, 61571237), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20221330, BK20151509), and the Horizontal Program of Research on Multifunctional Terahertz Antenna, China (Grant No. 2021external323).
    [1]

    Kleine Ostmann T, Nagatsuma T 2011 J. Infrared Milli. Terahz Waves 32 143Google Scholar

    [2]

    Tonouchi M 2007 Nature Photon. 1 97Google Scholar

    [3]

    Yang X, Pi Y M, Liu T, Wang H J 2018 IEEE Sens. J. 18 1063Google Scholar

    [4]

    Yang Q, Qin Y, Zhang K, Deng B, Wang X, Wang H 2017 Microw. Opt. Technol. Lett. 59 2048Google Scholar

    [5]

    Nagel M, Haring B P, Brucherseifer M, Kurz H, Bosserhoff A, Büttner R 2002 Appl. Phys. Lett. 80 154Google Scholar

    [6]

    贺敬文, 董涛, 张岩 2020 红外与激光工程 49 69

    He J W, Dong T, Zhang Y 2020 Infrared Laser Eng. 49 69

    [7]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [8]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-sci. Appl. 3 e218Google Scholar

    [9]

    白毅华, 吕浩然, 付鑫, 杨元杰 2022 中国光学快报 20 012601Google Scholar

    Bai Y H, Lü H R, Fu X, Yang Y J 2022 Chin. Opt. Lett. 20 012601Google Scholar

    [10]

    Huang H F, Xie S H 2021 OSA Continuum. 4 2082Google Scholar

    [11]

    李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 物理学报 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar

    [12]

    Pan Y B, Lan F, Zhang Y X, Zeng H X, Wang L Y, Song T Y, He G J, Yang Z Q 2022 Photonics Res. 10 416Google Scholar

    [13]

    Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light Sci. Appl. 5 e16076Google Scholar

    [14]

    Yu S X, Li L, Shi G M 2016 Appl. Phys. Express 9 082202Google Scholar

    [15]

    Li Z L, Wang W, Deng S X, Qu J, Li Y X, Lü B, Li W J, Gao X, Zhu Z, Guan C Y, Shi J H 2022 Opt. Lett. 47 441Google Scholar

    [16]

    Li J S, Li S H, Yao J Q 2020 Opt. Commun. 461 125186Google Scholar

    [17]

    Yasir Saifullah, 杨国敏, 徐丰 2021 雷达学报 10 382Google Scholar

    Yasir S, Yang G M, Xu F 2021 J. Radars 10 382Google Scholar

    [18]

    唐小燕, 柯友煌, 井绪峰, 别寻, 李晨霞, 洪治 2021 光子学报 50 150

    Tang X Y, Ke Y H, Jing X F, Bie X, Li C X, Hong Z 2021 Acta Photon. Sin. 50 150

    [19]

    Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar

    [20]

    Li C Q, He C H, Song Z Y 2022 IEEE Photon. J. 14 1Google Scholar

    [21]

    杨欢欢, 曹祥玉, 高军, 李桐, 李思佳, 丛丽丽, 赵霞 2021 雷达学报 10 206Google Scholar

    Yang H H, Cao X Y, Gao J, Li T, Li S J, Cong L L, Zhao X 2021 J. Radars 10 206Google Scholar

    [22]

    Bai X D 2020 Results in Phys. 18 103334Google Scholar

    [23]

    Li J S, Chen Y 2022 Appl. Opt. 61 4140Google Scholar

    [24]

    闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101Google Scholar

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101Google Scholar

    [25]

    Li J H, Zhang Y T, Li J N, Li J, Yang Y, Huang J, Ma C Q, Ma Z Z, Zhang Z, Liang L J, Yao J Q 2020 Opti. Commun. 458 124744Google Scholar

    [26]

    Ren Z R, Liu Y Q, Wang Y, Lu L, Qi K N, Yin H C 2022 IEEE Access 10 50479Google Scholar

    [27]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar

    [28]

    封覃银, 裘国华, 严德贤, 李吉宁, 李向军 2022 中国光学 15 387

    Feng T Y, Qiu G H, Yan D X, Li J N, Li X J 2022 Chin. Opt. 15 387

    [29]

    Liu X B, Wang Q, Zhang X Q, Li H, Xu Q, Xu Y H, Chen X Y, Li S X, Liu M, Tian Z, Zhang C H, Zou C W, Han J G, Zhang W L 2019 Adv. Opt. Mater. 12 1900175

    [30]

    张璋 2020 博士学位论文 (天津: 天津大学)

    Zhang Z 2020 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)

  • 图 1  编码超表面单元结构 (a)俯视图; (b)侧视图; (c)底部

    Fig. 1.  Schematic of the coding metasurface unit: (a) Top view; (b) side view; (c) bottom.

    图 2  VO2处于绝缘态时, x极化波(a)和y极化波(b)单元的电流分布; VO2处于金属态时, x极化波(c)和y极化波(d)单元的电流分布

    Fig. 2.  When VO2 is insulating state, surface current of x-polarized wave (a) and y-polarized wave (b) unit; when VO2 is metallic state, surface current of x-polarized wave (c) and y-polarized wave (d) unit.

    图 3  (a)—(d) VO2处于绝缘态时, 单元在正交极化波垂直入射下的反射幅度和反射相位 (a), (b) x极化波; (c), (d) y极化波. (e)—(h) VO2处于金属态时, 单元在正交极化波垂直入射下的反射幅度和反射相位 (e), (f) x极化波; (g), (h) y极化波

    Fig. 3.  (a)–(d) When VO2 is insulating state, the reflection amplitude and phase of the units under the vertical incidence of the orthogonal polarized wave: (a), (b) x-polarized wave; (c), (d) y-polarized wave. (e)–(h) When VO2 is metallic state, the reflection amplitude and phase of the units under the vertical incidence of the orthogonal polarized wave: (e), (f) x-polarized wave; (g), (h) y-polarized wave.

    图 4  (a)各向异性编码超表面编码序列; (b)各向异性编码超表面示意图; (c), (d) VO2为绝缘态, x极化波(c)与y极化波(d)垂直入射时的编码序列; (e), (f) VO2为金属态, x极化波(e)与y极化波(f)垂直入射时的编码序列

    Fig. 4.  (a) Anisotropic coding metasurface coding sequences; (b) diagram of anisotropic coding metasurface; (c), (d) VO2 is insulating state, the coding sequence when the x-polarized wave (c) and y-polarized wave (d) are incident vertically; (e), (f) VO2 is metallic state, the coding sequence when the x-polarized wave (e) and y-polarized wave (f) are incident vertically

    图 5  模式l = 2的涡旋波 (a)远场方向图; (b)相位图. 模式l = 1的涡旋波 (c)远场方向图; (d)相位图

    Fig. 5.  Vortex beam with mode l = 2: (a) Far-field diagram; (b) phase diagram. Vortex beam with mode l = 1: (c) Far-field diagram; (d) phase diagram.

    图 6  (a) 对称的4束反射波; (b)对称的2束反射波

    Fig. 6.  (a) Symmetrical four-beam reflected wave; (b) symmetrical two-beam reflected wave.

    图 7  不同形式的远场波束

    Fig. 7.  Different forms of far-field beams.

    表 1  8个编码超表面单元结构参数

    Table 1.  Structure parameters of eight coding metasurface units.

    单元1A1B2C2D3A3B4C4D
    X/μm6076819660768196
    Y/μm6060767681819696
    M/μm7676969676769696
    N/μm7676767696969696
    下载: 导出CSV

    表 2  不同状态下的波束形式

    Table 2.  Beam form in different states.

    正交极化波入射
    x极化波入射y极化波入射
    VO2绝缘态l = 2的涡旋波l = 1的涡旋波
    VO2金属态对称的4束反射波对称的2束反射波
    下载: 导出CSV

    表 3  编码超表面的设计方法及性能对比

    Table 3.  Design methods and performance comparison of coding metasurface.

    文献VO2各向异性单元层数波束形式的数目
    [12]NOYES53
    [13]NOYES32
    [15]YESNO32
    [27]NONO86
    Our workYESYES34
    下载: 导出CSV
  • [1]

    Kleine Ostmann T, Nagatsuma T 2011 J. Infrared Milli. Terahz Waves 32 143Google Scholar

    [2]

    Tonouchi M 2007 Nature Photon. 1 97Google Scholar

    [3]

    Yang X, Pi Y M, Liu T, Wang H J 2018 IEEE Sens. J. 18 1063Google Scholar

    [4]

    Yang Q, Qin Y, Zhang K, Deng B, Wang X, Wang H 2017 Microw. Opt. Technol. Lett. 59 2048Google Scholar

    [5]

    Nagel M, Haring B P, Brucherseifer M, Kurz H, Bosserhoff A, Büttner R 2002 Appl. Phys. Lett. 80 154Google Scholar

    [6]

    贺敬文, 董涛, 张岩 2020 红外与激光工程 49 69

    He J W, Dong T, Zhang Y 2020 Infrared Laser Eng. 49 69

    [7]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [8]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-sci. Appl. 3 e218Google Scholar

    [9]

    白毅华, 吕浩然, 付鑫, 杨元杰 2022 中国光学快报 20 012601Google Scholar

    Bai Y H, Lü H R, Fu X, Yang Y J 2022 Chin. Opt. Lett. 20 012601Google Scholar

    [10]

    Huang H F, Xie S H 2021 OSA Continuum. 4 2082Google Scholar

    [11]

    李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 物理学报 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar

    [12]

    Pan Y B, Lan F, Zhang Y X, Zeng H X, Wang L Y, Song T Y, He G J, Yang Z Q 2022 Photonics Res. 10 416Google Scholar

    [13]

    Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light Sci. Appl. 5 e16076Google Scholar

    [14]

    Yu S X, Li L, Shi G M 2016 Appl. Phys. Express 9 082202Google Scholar

    [15]

    Li Z L, Wang W, Deng S X, Qu J, Li Y X, Lü B, Li W J, Gao X, Zhu Z, Guan C Y, Shi J H 2022 Opt. Lett. 47 441Google Scholar

    [16]

    Li J S, Li S H, Yao J Q 2020 Opt. Commun. 461 125186Google Scholar

    [17]

    Yasir Saifullah, 杨国敏, 徐丰 2021 雷达学报 10 382Google Scholar

    Yasir S, Yang G M, Xu F 2021 J. Radars 10 382Google Scholar

    [18]

    唐小燕, 柯友煌, 井绪峰, 别寻, 李晨霞, 洪治 2021 光子学报 50 150

    Tang X Y, Ke Y H, Jing X F, Bie X, Li C X, Hong Z 2021 Acta Photon. Sin. 50 150

    [19]

    Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar

    [20]

    Li C Q, He C H, Song Z Y 2022 IEEE Photon. J. 14 1Google Scholar

    [21]

    杨欢欢, 曹祥玉, 高军, 李桐, 李思佳, 丛丽丽, 赵霞 2021 雷达学报 10 206Google Scholar

    Yang H H, Cao X Y, Gao J, Li T, Li S J, Cong L L, Zhao X 2021 J. Radars 10 206Google Scholar

    [22]

    Bai X D 2020 Results in Phys. 18 103334Google Scholar

    [23]

    Li J S, Chen Y 2022 Appl. Opt. 61 4140Google Scholar

    [24]

    闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101Google Scholar

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101Google Scholar

    [25]

    Li J H, Zhang Y T, Li J N, Li J, Yang Y, Huang J, Ma C Q, Ma Z Z, Zhang Z, Liang L J, Yao J Q 2020 Opti. Commun. 458 124744Google Scholar

    [26]

    Ren Z R, Liu Y Q, Wang Y, Lu L, Qi K N, Yin H C 2022 IEEE Access 10 50479Google Scholar

    [27]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar

    [28]

    封覃银, 裘国华, 严德贤, 李吉宁, 李向军 2022 中国光学 15 387

    Feng T Y, Qiu G H, Yan D X, Li J N, Li X J 2022 Chin. Opt. 15 387

    [29]

    Liu X B, Wang Q, Zhang X Q, Li H, Xu Q, Xu Y H, Chen X Y, Li S X, Liu M, Tian Z, Zhang C H, Zou C W, Han J G, Zhang W L 2019 Adv. Opt. Mater. 12 1900175

    [30]

    张璋 2020 博士学位论文 (天津: 天津大学)

    Zhang Z 2020 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [3] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [4] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [5] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [6] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] 欧阳昊, 胡思扬, 申曼玲, 张晨希, 程湘爱, 江天. GeSe2中强各向异性偏振相关的非线性光学响应. 物理学报, 2020, 69(18): 184212. doi: 10.7498/aps.69.20200443
    [8] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [9] 张朋, 刘政, 戴建明, 杨昭荣, 苏付海. 强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收. 物理学报, 2020, 69(20): 207501. doi: 10.7498/aps.69.20201507
    [10] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [11] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [13] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [14] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [15] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [16] 张永伟, 殷春浩, 赵强, 李富强, 朱姗姗, 刘海顺. TiO2电子结构与其双折射性、各向异性关联的理论研究. 物理学报, 2012, 61(2): 027801. doi: 10.7498/aps.61.027801
    [17] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [18] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性. 物理学报, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [19] 史力斌, 任骏原, 张凤云, 张国华, 余增强. 关于MgB2/Al2O3超导薄膜电阻转变和各向异性的研究. 物理学报, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [20] 李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性. 物理学报, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
计量
  • 文章访问数:  2248
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-12
  • 修回日期:  2023-02-14
  • 上网日期:  2023-03-21
  • 刊出日期:  2023-06-20

/

返回文章
返回