搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LaTiO3(110)薄膜分子束外延生长的精确控制和表面截止层的研究

李文涛 梁艳 王炜华 杨芳 郭建东

引用本文:
Citation:

LaTiO3(110)薄膜分子束外延生长的精确控制和表面截止层的研究

李文涛, 梁艳, 王炜华, 杨芳, 郭建东

Precise control of LaTiO3(110) film growth by molecular beam epitaxy and surface termination of the polar film

Li Wen-Tao, Liang Yan, Wang Wei-Hua, Yang Fang, Guo Jian-Dong
PDF
导出引用
  • LaTiO3 是一种典型的强关联电子材料, 其(110) 薄膜为通过晶格对称性、应变等的设计调控外延结构的物理性质提供了新的机会. 本文研究了SrTiO3(110) 衬底表面金属La 和Ti 沉积所引起的微观结构变化, 进而利用电子衍射信号对分子束外延薄膜生长表面阳离子浓度的灵敏响应, 发展了原位、实时、精确控制金属蒸发源沉积速率的方法, 实现了高质量LaTiO3(110) 薄膜的生长和对阳离子化学配比的精确控制. 由于LaTiO3中Ti3+ 3d 电子的库仑排斥作用, 氧原子层截止的(110) 表面更容易实现极性补偿, 因此生长得到的薄膜表面暴露出单一类型的氧截止面.
    Transition metal oxides exhibit abundant physical properties due to the electronic interactions between charge, orbit and spin degrees of freedom. Lanthanum titanate, LaTiO3, a typical strongly correlated electron material, shows Mott-type metal-insulator and antiferromagnetic transitions at low temperature. And these interesting behaviors can be tuned by adjusting the occupation of the t2g orbit of Ti3+, or introducing symmetry breaking or lattice strain into the heterointerfaces. Especially on LaTiO3(110) surface, the anisotropic structure as well as the surface polarity allows the flexible control of artificial low-dimensional structure. However, the instability induced by surface polarity hinders the growth of high-quality LaTiO3(110) film. Here we show that by keeping the growing surface reconstructed in the molecular beam epitaxy (MBE) process, the surface polarity can be effectively compensated for, allowing the high-quality layer-by-layer film growth. Moreover, the intensity of reflective high-energy electron diffraction (RHEED) pattern sensitively changes with the surface cation concentration. Therefore the relative deposition rates of La and Ti sources can be monitored and further be precisely calibrated in situ and in real-time. We first prepare the (2× 16) reconstruction on SrTiO3(110) surface by depositing La and Ti (2 ML for each) metals. Further increasing the Ti concentration on (2×16), i. e., the [Ti]/[La] ratio, results in the significant decrease of RHEED “1×” intensity and the increase of “2×” intensity. And the change of RHEED intensity is quantitatively reversible through reducing the [Ti]/[La] ratio by the same amount. We set the evaporation rate of Ti source to be slightly higher than that of La for the MBE film growth. And the shutter state of Ti source is controlled to be open or close, which is determined by the change of RHEED intensity. Precise cation stoichiometry is achieved in the LaTiO3(110) film. X-ray diffraction confirms the single crystallinity of the film while scanning tunneling microscope images indicate the atomically flat surface with (2×16) reconstruction that is responsible for the stabilization of the polar surface. The annealing of the sample in oxygen at 700 ℃ will oxidize the LaTiO3 film into the thermodynamically stable phase, i. e. , La2Ti2O7, although the as-grown LaTiO3 phase can be stable at room temperature. The high-resolution STM images reveal the detailed structural information of the (2×16) film surface–along the [001] direction, the tilt of TiO6 octahedron in LaTiO3 lattice results in the “2×” periodicity modulation on the (110) surface. The “×16” periodicity along [110] might be related to the rotation of TiO6 octahedron in (001) plane or to the strain relief on the surface. Both of the RHEED and STM observations indicate that the film surface is terminated by the TiO6 octahedron, i. e., the (O2) atom layer. Indeed the LaTiO3(110) polar surface can be stabilized by making two holes on the (O2) layer by oxidizing Ti3+ into Ti4+. On the contrary, due to the Coulomb repulsion between electrons on Ti3+ 3d orbit, the (110) surface is difficult to reduce (to introduce extra electrons). Therefore the (LaTiO) termination layer cannot be stable.
    • 基金项目: 国家重点基础研究发展计划(973 计划)(批准号:2012CB921700), 国家自然科学基金(批准号: 11225422, 11474334) 和中国科学院战略性先导科技专项(B 类, 批准号XDB07010100) 资助的课题.
    • Funds: Project supported by the National Basic Research Project of China (Grant No. 2012CB921700), National Natural Science Foundation of China (Grant Nos. 11225422 & 11474334) and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB07010100).
    [1]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [2]

    Okimoto Y, Katsufuji T, Okada Y, Arima T, Tokura Y 1995 Phys. Rev. B 51 9581

    [3]

    Meijer G I, Henggeler W, Brown J, Becker O S, Bednorz J G, Rossel C, Wachter P 1999 Phys. Rev. B 59 11832

    [4]

    Hays C C, Zhou J S, Markert J T, Goodenough J B 1999 Phys. Rev. B 60 10367

    [5]

    Kim K H, Norton D P, Budai J D, Chisholm M F, Sales B C, Christern D K, Cantoni C 2003 Phys. Stat. Sol. 200 346

    [6]

    Lichtenberg F, Widmer D, Bednorz J G, Williams T, Reller A 1991 Z. Phys. B Condensed Matter. 82 211

    [7]

    Ohtomo A, Muller D A, Grazul J L, Hwang H Y 2002 Nature 419 378

    [8]

    Schlom D G, Chen L Q, Pan X Q, Schmehl A, Zurbuchen M A 2008 J. Am. Ceram. Soc. 91 2429

    [9]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nature Mater. 11 103

    [10]

    Huang X, Dong S 2014 Mod. Phys. Lett. B 281 43010

    [11]

    Chen Y Z, Sun J R, Shen B G, Linderoth S 2013 Chin. Phys. B 22 116803

    [12]

    Wang Z, Zhong Z, Hao X, Gerhold S, Stoger B, Schmid M, Sanchez -B J, Varyhalov A, Franchini C, Held K, Diebold U 2014 PNAS 111 3933

    [13]

    Herranz G, Singh G, Bergeal N, Jouan A, Lesueur J, Gazquer J, Varela M, Scigaj M, Dix N, Sanchez F, Fontcuberta, J 2015 Nature Comm. 6 6028

    [14]

    Feng J, Zhu X, Guo J 2013 Surf. Sci. 614 38

    [15]

    Wang Z, Yang F, Zhang Z, Tang Y, Feng J, Wu K, Guo Q, Guo J 2011 Phys. Rev. B 83 155453

    [16]

    Feng J, Yang F, Wang Z, Yang Y, Gu L, Zhang J, Guo J 2012 AIP Advances 2 041407

    [17]

    Marshall M S J, Castell M R 2014 Chem. Soc. Rev. 43 2226

    [18]

    Li W, Liu S, Wang S, Guo Q, Guo J 2014 J. Phys. Chem. C 118 2469

    [19]

    Hemberger J, Nidda H -A K, Fritsch V, Deisenhofer J, Lobina S, Rudolf T, Lunkenheimer P, Lichtenberg F, Loidl A, Bruns D, Buchner B 2003 Phys. Rev. Lett. 91 066403

    [20]

    Glazer A M 1975 Acta Cryst. A 31 756

    [21]

    Havelia S, Balasubramaniam K R, Spurgeon S, Cormack F, Salvador P A 2008 J. Cryst. Growth 310 1985

    [22]

    Wang Z, Wu K, Guo Q, Guo J 2009 Appl. Phys. Lett. 95 021912

    [23]

    Russell B C, Castell M R 2008 Phys. Rev. B 77 245414

    [24]

    Enterkin J A, Subramanian A K, Russell B C, Castell M R, Poeppelmeier K R, Marks L D 2010 Nat. Mater. 9 245

    [25]

    Cao Y, Wang S, Liu S, Guo Q, Guo J 2012 J. Chem. Phys. 137 044701

  • [1]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [2]

    Okimoto Y, Katsufuji T, Okada Y, Arima T, Tokura Y 1995 Phys. Rev. B 51 9581

    [3]

    Meijer G I, Henggeler W, Brown J, Becker O S, Bednorz J G, Rossel C, Wachter P 1999 Phys. Rev. B 59 11832

    [4]

    Hays C C, Zhou J S, Markert J T, Goodenough J B 1999 Phys. Rev. B 60 10367

    [5]

    Kim K H, Norton D P, Budai J D, Chisholm M F, Sales B C, Christern D K, Cantoni C 2003 Phys. Stat. Sol. 200 346

    [6]

    Lichtenberg F, Widmer D, Bednorz J G, Williams T, Reller A 1991 Z. Phys. B Condensed Matter. 82 211

    [7]

    Ohtomo A, Muller D A, Grazul J L, Hwang H Y 2002 Nature 419 378

    [8]

    Schlom D G, Chen L Q, Pan X Q, Schmehl A, Zurbuchen M A 2008 J. Am. Ceram. Soc. 91 2429

    [9]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nature Mater. 11 103

    [10]

    Huang X, Dong S 2014 Mod. Phys. Lett. B 281 43010

    [11]

    Chen Y Z, Sun J R, Shen B G, Linderoth S 2013 Chin. Phys. B 22 116803

    [12]

    Wang Z, Zhong Z, Hao X, Gerhold S, Stoger B, Schmid M, Sanchez -B J, Varyhalov A, Franchini C, Held K, Diebold U 2014 PNAS 111 3933

    [13]

    Herranz G, Singh G, Bergeal N, Jouan A, Lesueur J, Gazquer J, Varela M, Scigaj M, Dix N, Sanchez F, Fontcuberta, J 2015 Nature Comm. 6 6028

    [14]

    Feng J, Zhu X, Guo J 2013 Surf. Sci. 614 38

    [15]

    Wang Z, Yang F, Zhang Z, Tang Y, Feng J, Wu K, Guo Q, Guo J 2011 Phys. Rev. B 83 155453

    [16]

    Feng J, Yang F, Wang Z, Yang Y, Gu L, Zhang J, Guo J 2012 AIP Advances 2 041407

    [17]

    Marshall M S J, Castell M R 2014 Chem. Soc. Rev. 43 2226

    [18]

    Li W, Liu S, Wang S, Guo Q, Guo J 2014 J. Phys. Chem. C 118 2469

    [19]

    Hemberger J, Nidda H -A K, Fritsch V, Deisenhofer J, Lobina S, Rudolf T, Lunkenheimer P, Lichtenberg F, Loidl A, Bruns D, Buchner B 2003 Phys. Rev. Lett. 91 066403

    [20]

    Glazer A M 1975 Acta Cryst. A 31 756

    [21]

    Havelia S, Balasubramaniam K R, Spurgeon S, Cormack F, Salvador P A 2008 J. Cryst. Growth 310 1985

    [22]

    Wang Z, Wu K, Guo Q, Guo J 2009 Appl. Phys. Lett. 95 021912

    [23]

    Russell B C, Castell M R 2008 Phys. Rev. B 77 245414

    [24]

    Enterkin J A, Subramanian A K, Russell B C, Castell M R, Poeppelmeier K R, Marks L D 2010 Nat. Mater. 9 245

    [25]

    Cao Y, Wang S, Liu S, Guo Q, Guo J 2012 J. Chem. Phys. 137 044701

  • [1] 裴明辉, 田瑜, 张金星. 钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用. 物理学报, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [2] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [3] 张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋. SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长. 物理学报, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [4] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [5] 韦庞, 李康, 冯硝, 欧云波, 张立果, 王立莉, 何珂, 马旭村, 薛其坤. 在预刻蚀的衬底上通过分子束外延直接生长出拓扑绝缘体薄膜的微器件. 物理学报, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [6] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长. 物理学报, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [7] 周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召. 反射式高能电子衍射实时监控的分子束外延生长GaAs晶体衬底温度校准及表面相变的研究. 物理学报, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [8] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [9] 赵明海, 孙静静, 王丹, 邹志强, 梁齐. C60分子在Si(111)-7×7表面分子束外延生长的STM研究. 物理学报, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [10] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜. 物理学报, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [11] 张营堂, 何萌, 陈子瑜, 吕惠宾. 用激光分子束外延在玻璃衬底上生长La0.67Sr0.33MnO3薄膜. 物理学报, 2009, 58(3): 2002-2004. doi: 10.7498/aps.58.2002
    [12] 何 萌, 刘国珍, 仇 杰, 邢 杰, 吕惠宾. 用激光分子束外延在Si衬底上外延生长高质量的TiN薄膜. 物理学报, 2008, 57(2): 1236-1240. doi: 10.7498/aps.57.1236
    [13] 延凤平, 郑 凯, 王 琳, 李一凡, 龚桃荣, 简水生, 尾形健一, 小池一步, 佐佐诚彦, 井上正崇, 矢野满明. 分子束外延法在Sapphire衬底上生长的Zn1-xMgxO薄膜折射率及厚度的测试. 物理学报, 2007, 56(7): 4127-4131. doi: 10.7498/aps.56.4127
    [14] 卢励吾, 张砚华, J.Wang, WeikunGe. 分子束外延生长赝配高电子迁移率超高速微结构功能材料里深中心识别. 物理学报, 2002, 51(2): 372-376. doi: 10.7498/aps.51.372
    [15] 刘洪飞, 陈 弘, 李志强, 万 里, 黄 绮, 周均铭, 罗 毅, 韩英军. GaAs(001)衬底上分子束外延生长立方和六方GaN薄膜. 物理学报, 2000, 49(6): 1132-1135. doi: 10.7498/aps.49.1132
    [16] 崔大复, 陈 凡, 赵 彤, 师文生, 陈正豪, 周岳亮, 吕惠宾, 杨国桢, 黄惠忠, 张宏霞. 激光分子束外延BaTiO3薄膜最顶层表面原子平面与薄膜生长机理. 物理学报, 2000, 49(9): 1878-1882. doi: 10.7498/aps.49.1878
    [17] 王绍青, 刘全补, 叶恒强. 分子束外延生长GaN薄膜中的一种早期位错结构. 物理学报, 1998, 47(11): 1858-1861. doi: 10.7498/aps.47.1858
    [18] 易新建, 李 毅, 郝建华, 张新宇, G.K.WONG. 分子束外延生长Sb薄膜及其量子尺寸效应. 物理学报, 1998, 47(11): 1896-1899. doi: 10.7498/aps.47.1896
    [19] 潘士宏, 王忠和, 黄硕, 张存洲, 周小川, 徐贵昌, 蒋健, 陈忠圭. 掺杂分子束外延GaAs薄膜表面和GaAs-GaAs界面的光反射调制谱. 物理学报, 1993, 42(11): 1879-1886. doi: 10.7498/aps.42.1879
    [20] 周国良, 陈可明, 田亮光. 在Si衬底上用分子束外延低温生长Ge薄膜. 物理学报, 1988, 37(10): 1607-1612. doi: 10.7498/aps.37.1607
计量
  • 文章访问数:  5967
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-03
  • 修回日期:  2015-03-25
  • 刊出日期:  2015-04-05

/

返回文章
返回