搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于实现散射介质中时间反演的数字相位共轭的相干性

张洪波 张希仁

引用本文:
Citation:

用于实现散射介质中时间反演的数字相位共轭的相干性

张洪波, 张希仁

Coherence of digital phase conjugation for implementing time reversal in scattering media

Zhang Hong-Bo, Zhang Xi-Ren
PDF
导出引用
  • 抑制散射介质对光的散射,调控光在散射介质中的传输,是光通信、生物光子学、光镊等领域的重要课题.设计并实现了基于宽谱光源和数字相位共轭的可调控光在散射介质中传输的时间反演实验系统.实验获取了不同相干长度下物光和参考光束之间的光程差与干涉图样、相位图及时间反演信号之间的关系,分析了光源相干性对调控光在散射介质中传输的影响.实验结果表明,基于宽谱光源的相干特性和数字相位共轭技术,通过调节光程差能选择性获取同一散射角度及相同传输路径的光束的相对相位,再利用空间光调制器对参考光束进行调控,实现光束的反向传播,从而选择性实现对同一散射角度及相同传输路径的光的时间反演.
    The strong light scattering in complex media, due to the highly inhomogeneous distributions of refractive indexes, is regarded as a fundamental impediment in numerous optical applications such as optical communications, biophotonics, and optical tweezer. Recently, many optical techniques based on the coherence of light source with long coherent length have been developed and widely used to suppress and control light scattering and propagation in complex media. Here, we propose and experimentally demonstrate the control and time reversal of only one part instead of all of light passing through complex media and different optical paths by combining digital phase conjugation and coherence gating based on partially coherent light source. Interference of reference and objective beams and corresponding phase maps are measured by the charge coupled device (CCD) and four-step phase-shift measuring technique only when the optical path difference between two beams is less than coherence length. Time reversal is achieved by spatial light modulator (SLM). In the experiment we further analyze the phase map and time reversal with different optical path differences and different coherence lengths of source. The experimental results demonstrate that for each optical path difference, the time reversal of only the part of light coming from the same scattering> and identical optical path is achieved by digital phase conjugation and coherent gating of broadband light source.
      通信作者: 张希仁, xiren3208@163.com
    • 基金项目: 国家自然科学基金(批准号:61107078,61775030)资助的课题.
      Corresponding author: Zhang Xi-Ren, xiren3208@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61107078, 61775030).
    [1]

    Amitonova L, Descloux A, Petschulat J, Frosz M, Ahmed G, Babic F, Jiang X, Mosk A, Russell P, Pinkse P 2016 Opt. Lett. 41 497

    [2]

    Tomáš Č, Michael M, Kishan D 2010 Nat. Photon. 4 388

    [3]

    Atz O, Small E, Bromberg Y, Silberberg Y 2011 Nat. Photon. 5 372

    [4]

    Wang L, Wu H 2007 Biomedical Optics: Principles and Imaging (New York: John Wiley & Sons, Inc.) p7

    [5]

    Vellekoop I, Mosk A 2007 Opt. Lett. 32 2309

    [6]

    Vellekoop I, Mosk A 2008 Phys. Rev. Lett. 101 120601

    [7]

    Vellekoop I, Lagendijk A, Mosk A 2010 Nat. Photon. 4 320

    [8]

    Mosk A, Lagendijk A, Lerosey G, Fink M 2012 Nat. Photon. 6 283

    [9]

    Lai P, Wang L, Tay J, Wang L V 2015 Nat. Photon. 9 126

    [10]

    Vellekoop I, Mosk A 2008 Opt. Commun. 281 3071

    [11]

    Guan Y, Katz O, Small E, Zhou J, Silberberg Y 2012 Opt. Lett. 37 4663

    [12]

    Small E, Katz O, Guan Y, Silberberg Y 2012 Opt. Lett. 37 3429

    [13]

    Katz O, Small E, Bromberg Y, Silberberg Y 2011 Nat. Photon. 5 372

    [14]

    McCabe D J, Tajalli A, Austin D R, Bondareff P I, Walmsley A, Gigan S, Chatel B 2011 Nat. Commun. 2 447

    [15]

    Leith E N, Upatnieks J 1966 J Opt. Soc. Am. 56 523

    [16]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photon. 2 110

    [17]

    Xu X A, Liu H L, Wang L V 2011 Nat. Photon. 5 154

    [18]

    Cui M, McDowell E J, Yang C 2010 Opt. Express 18 25

    [19]

    Kim M, Choi Y, Yoon C, Choi W, ImK J, Park Q, Choi W 2012 Nat. Photon. 6 581

    [20]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601

    [21]

    Popoff S M, Lerosey G, Fink M, Boccara A, Gigan S 2010 Nat. Commun. 1 81

    [22]

    Choi Y, Yang D, Fang-Yen C, Kang P, Lee K, Dasari R, Feld M, Choi W 2011 Phys. Rev. Lett. 107 023902

    [23]

    Yoon J, Lee K, Park J, Park Y 2015 Opt. Express 23 10158

    [24]

    Xu J, Ruan H, Liu Y, Zhou H, Yang C 2017 Opt. Express 25 27234

    [25]

    Wang Y M, Judkewitz B, DiMarzio C A, Yang C H 2012 Nat. Commun. 3 928

    [26]

    Si K, Fiolka R, Cui M 2012 Nat. Photon. 6 657

    [27]

    Cui M, Yang C 2010 Opt. Express 18 3444

    [28]

    Vellekoop I M, Cui M, Yang C 2012 Appl. Phys. Lett. 101 081108

    [29]

    Hsieh C L, Pu Y, Grange R, Laporte G, Psaltis D 2010 Opt. Express 18 20723

    [30]

    Hillman T R, Yamauchi T, Choi W, Dasari R R, Feld M S, Park Y, Yaqoob Z 2013 Sci. Rep. 3 1909

    [31]

    Yamaguchi I, Zhang T 1997 Opt. Lett. 22 1268

    [32]

    Jia Y, Yang Y H 2006 Journal of Optoelectronics·Laser 17 372 (in Chinese) [贾 岩, 杨远洪 2006 光电子·激光 17 372]

  • [1]

    Amitonova L, Descloux A, Petschulat J, Frosz M, Ahmed G, Babic F, Jiang X, Mosk A, Russell P, Pinkse P 2016 Opt. Lett. 41 497

    [2]

    Tomáš Č, Michael M, Kishan D 2010 Nat. Photon. 4 388

    [3]

    Atz O, Small E, Bromberg Y, Silberberg Y 2011 Nat. Photon. 5 372

    [4]

    Wang L, Wu H 2007 Biomedical Optics: Principles and Imaging (New York: John Wiley & Sons, Inc.) p7

    [5]

    Vellekoop I, Mosk A 2007 Opt. Lett. 32 2309

    [6]

    Vellekoop I, Mosk A 2008 Phys. Rev. Lett. 101 120601

    [7]

    Vellekoop I, Lagendijk A, Mosk A 2010 Nat. Photon. 4 320

    [8]

    Mosk A, Lagendijk A, Lerosey G, Fink M 2012 Nat. Photon. 6 283

    [9]

    Lai P, Wang L, Tay J, Wang L V 2015 Nat. Photon. 9 126

    [10]

    Vellekoop I, Mosk A 2008 Opt. Commun. 281 3071

    [11]

    Guan Y, Katz O, Small E, Zhou J, Silberberg Y 2012 Opt. Lett. 37 4663

    [12]

    Small E, Katz O, Guan Y, Silberberg Y 2012 Opt. Lett. 37 3429

    [13]

    Katz O, Small E, Bromberg Y, Silberberg Y 2011 Nat. Photon. 5 372

    [14]

    McCabe D J, Tajalli A, Austin D R, Bondareff P I, Walmsley A, Gigan S, Chatel B 2011 Nat. Commun. 2 447

    [15]

    Leith E N, Upatnieks J 1966 J Opt. Soc. Am. 56 523

    [16]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photon. 2 110

    [17]

    Xu X A, Liu H L, Wang L V 2011 Nat. Photon. 5 154

    [18]

    Cui M, McDowell E J, Yang C 2010 Opt. Express 18 25

    [19]

    Kim M, Choi Y, Yoon C, Choi W, ImK J, Park Q, Choi W 2012 Nat. Photon. 6 581

    [20]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601

    [21]

    Popoff S M, Lerosey G, Fink M, Boccara A, Gigan S 2010 Nat. Commun. 1 81

    [22]

    Choi Y, Yang D, Fang-Yen C, Kang P, Lee K, Dasari R, Feld M, Choi W 2011 Phys. Rev. Lett. 107 023902

    [23]

    Yoon J, Lee K, Park J, Park Y 2015 Opt. Express 23 10158

    [24]

    Xu J, Ruan H, Liu Y, Zhou H, Yang C 2017 Opt. Express 25 27234

    [25]

    Wang Y M, Judkewitz B, DiMarzio C A, Yang C H 2012 Nat. Commun. 3 928

    [26]

    Si K, Fiolka R, Cui M 2012 Nat. Photon. 6 657

    [27]

    Cui M, Yang C 2010 Opt. Express 18 3444

    [28]

    Vellekoop I M, Cui M, Yang C 2012 Appl. Phys. Lett. 101 081108

    [29]

    Hsieh C L, Pu Y, Grange R, Laporte G, Psaltis D 2010 Opt. Express 18 20723

    [30]

    Hillman T R, Yamauchi T, Choi W, Dasari R R, Feld M S, Park Y, Yaqoob Z 2013 Sci. Rep. 3 1909

    [31]

    Yamaguchi I, Zhang T 1997 Opt. Lett. 22 1268

    [32]

    Jia Y, Yang Y H 2006 Journal of Optoelectronics·Laser 17 372 (in Chinese) [贾 岩, 杨远洪 2006 光电子·激光 17 372]

  • [1] 段美刚, 赵映, 左浩毅. 基于迭代算法的不同状态散射光场聚焦. 物理学报, 2024, 73(12): 124203. doi: 10.7498/aps.73.20231991
    [2] 安腾远, 丁霄, 王秉中. 基于时间反演技术的复杂天线罩辐射波束畸变纠正. 物理学报, 2023, 72(3): 030401. doi: 10.7498/aps.72.20221767
    [3] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量. 物理学报, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [4] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [5] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测. 物理学报, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [6] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究. 物理学报, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [7] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [8] 朱江, 王雁, 杨甜. 无线多径信道中基于时间反演的物理层安全传输机制. 物理学报, 2018, 67(5): 050201. doi: 10.7498/aps.67.20172134
    [9] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像. 物理学报, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [10] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦. 物理学报, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [11] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成. 物理学报, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [12] 冯菊, 廖成, 张青洪, 盛楠, 周海京. 蒸发波导中的时间反演抛物方程定位法. 物理学报, 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [13] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [14] 满天龙, 万玉红, 江竹青, 王大勇, 陶世荃. 孪生光束干涉法测量光源的空间相干性. 物理学报, 2013, 62(21): 214203. doi: 10.7498/aps.62.214203
    [15] 章志敏, 王秉中, 葛广顶. 一种用于时间反演通信的亚波长天线阵列设计. 物理学报, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [16] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福. 光子晶体光纤反常色散区抽运产生超连续谱的相干特性分析. 物理学报, 2012, 61(12): 124211. doi: 10.7498/aps.61.124211
    [17] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [18] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福, 肖瑞. 复自相干度度量超连续谱相干性. 物理学报, 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [19] 周飞, 丁天怀. 散射介质中层间杂质检测效率的影响因素及分析. 物理学报, 2010, 59(12): 8451-8458. doi: 10.7498/aps.59.8451
    [20] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
计量
  • 文章访问数:  6820
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-26
  • 修回日期:  2017-12-24
  • 刊出日期:  2018-03-05

/

返回文章
返回