搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火温度对电子束蒸发沉积Cu2O薄膜性能的影响

李海涛 江亚晓 涂丽敏 李少华 潘玲 李文标 杨仕娥 陈永生

引用本文:
Citation:

退火温度对电子束蒸发沉积Cu2O薄膜性能的影响

李海涛, 江亚晓, 涂丽敏, 李少华, 潘玲, 李文标, 杨仕娥, 陈永生

Influence of annealing temperature on properties of Cu2O thin films deposited by electron beam evaporation

Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Shao-Hua, Pan Ling, Li Wen-Biao, Yang Shi-E, Chen Yong-Sheng
PDF
导出引用
  • 近年来,钙钛矿太阳电池(PSCs)得到了迅猛发展,而无机空穴传输材料(IHTMs)的使用可进一步降低电池的成本,提高电池的稳定性.本文通过电子束蒸发制备了Cu2O薄膜,研究了空气中退火温度及时间对薄膜组成、结构及光电性能的影响,并构筑了p-i-n反型平面异质结钙钛矿太阳电池.研究发现:由于热解作用,直接通过电子束蒸发制备的薄膜为Cu2O和Cu的混合物;而在空气中经过退火后,由于氧化作用,随着退火温度的升高,薄膜的组分由混合物转变为纯的Cu2O,再转变成纯的CuO.通过控制退火温度制备的Cu2O薄膜的光学带隙约为2.5 eV,载流子迁移率约为30 cm2·V-1·s-1.应用于PSCs,薄膜的最佳厚度为40 nm,但电池性能低于PEDOT:PSS基的PSCs.这主要是由于钙钛矿前驱液在Cu2O薄膜的润湿性较差,吸收层中有大量微孔洞存在,致使漏电流增强,电池的性能降低.然而,当采用Cu2O/PEDOT:PSS双HTMs设计时,由于PEDOT:PSS对Cu2O具有较强的腐蚀作用,使电池性能恶化.
    Inorganic-organic metal halide perovskite solar cells (PSCs) have drawn tremendous attention as a promising next-generation solar-cell technology because of their high efficiencies and low production cost. Since the first report in 2009, the recorded power conversion efficiency (PCE) of PSCs has rapidly risen to 22.1% by using 2, 2', 7, 7'-tetrakis (N,Ndi-p-methoxyphenyl-amine) 9,9-spirobifluorene (spiro-MeoTAD) as hole transport material (HTM), with the efforts devoted to the device architecture optimization, material compositional engineer and interface engineering. Nevertheless, the synthesis and cost of the organic HTM (OHTM) become a major challenging issue and therefore alternative materials are required. In the past few years, the applications of inorganic HTMs (IHTMs) in PSCs have shown large improvement in PCE and stability. For example, PSCs with CuOx as IHTM reached a PCE of 19.0% with better stability. Even more exciting, the theoretical PCE of PSC based on Cu2O HTM reaches 24.4%. So, Cu2O is a promising IHTM for future optimized PSC and the large area uniform preparation is very important. In this paper, Cu2O films have been successfully prepared using electron beam evaporation followed by air annealing. The influences of annealing temperature and time on the composition, structure, and photoelectric characteristics of film are investigated in detail. It is found that the as-deposited film is a mixture of Cu2O and Cu. With the increase of annealing temperature, material composition is transformed from mixture to pure Cu2O phase, and then to CuO, due to the oxidation in air. In an annealing temperature between 100℃ to 150℃, pure Cu2O film can be obtained with an average transmission rate over 70%, optical band-gap of 2.5 eV, HOMO level of -5.32 eV, and a carrier mobility of 30 cm2·V-1·s-1. When the film is treated with a UV lamp, the structure and composition of the film can be changed more easily because of the enhancement of oxidation. Finally, reverted planar PSCs with the structure of Ag/PCBM/CH3NH3PbI3/HTMs/ITO are constructed and compared carefully based on HTMs of Cu2O, with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS), and Cu2O/PEDOT:PSS layers, respectively. An optimum thickness of 40 nm of Cu2O HTM is achieved with high carrier extraction rate. However, the performances of all of the PSCs are inferior to those of PEDOT:PSS-based devices, due to the formation of pinholesin absorber layer resulting from the strong hydrophobicity of Cu2O film. However, the efficiency of PSC based on Cu2O/PEDOT:PSS double-HTM is deteriorated because of the chemical interaction between PEDOT:PSS and Cu2O. These findings provide some important guidelines for the design of HTMs.
      通信作者: 陈永生, chysh2003@zzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61574129)和河南省基础与前沿计划(批准号:152300410035)资助的课题.
      Corresponding author: Chen Yong-Sheng, chysh2003@zzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574129) and the Basic and Frontier Project of Henan Province in China (Grant No. 152300410035).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S 2017 Science 356 1376

    [3]

    Li M H, Yum J H, Moon S J, Chen P 2016 Energies 9 331

    [4]

    Cai Q, Li H, Jiang Y, Tu L, Ma L, Wu X, Yang S, Shi Z, Zang J, Chen Y 2018 Sol. Energy 159 786

    [5]

    Bakr Z H, Wali Q, Fakharuddin A, Schmidt-Mende L, Browne T M, Jose R 2017 Nano Energy 34 271

    [6]

    You J B, Meng L, Song T B, et al. 2016 Nat. Nanotechnol. 11 75

    [7]

    Brinkmann K O, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M F, Luechinger N A, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938

    [8]

    Li B S, Akimoto K, Shen A 2009 J. Cryst. Growth 311 1102

    [9]

    Xu Y, Jiao X, Chen D 2008 J. Phys. Chem. C 112 16769

    [10]

    Malerba C, Biccari F, Ricardo C L A, D’Incau M, Scardi P, Mittiga A 2011 Sol. Energy Mater. Sol. Cells 95 2848

    [11]

    Guo Y, Lei H, Xiong L, Li B, Chen Z, Wen J, Yang G, Li G, Fang G 2017 J. Mater. Chem. A 5 11055

    [12]

    Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370

    [13]

    Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 Chemsuschem 9 302

    [14]

    Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173

    [15]

    Zuo C, Ding L 2015 Small 11 5528

    [16]

    Sun W, Li Y, Ye S, Rao H, Yan W, Peng H, Li Y, Liu Z, Wang S, Chen Z, Xiao L, Bian Z, Huang C 2016 Nanoscale 8 10806

    [17]

    Rao H, Ye S, Sun W, Yan W, Li Y, Peng H, Liu Z, Bian Z, Li Y, Huang C 2016 Nano Energy 27 51

    [18]

    Moghtaderi B 2010 Energy Fuels 24 190

    [19]

    Gan J, Venkatachalapathy V, Svensson B G, Monakhov E V 2015 Thin Solid Films 594 250

    [20]

    Shang Y, Shao Y M, Zhang D F, Guo L 2014 Angew. Chem. Int. Ed. 53 11514

    [21]

    Liu A, Liu G, Zhu C, Zhu H, Fortunato E, Martins R, Shan F 2016 Adv. Electron. Mater. 2 1600140

    [22]

    Zhang H, Zhang D, Guo L, Zhang R, Yin P, Wang R 2008 J. Nanosci. Nanotechnol. 8 6332

    [23]

    Li C, Li Y, Delaunay J J 2014 ACS Appl. Mater. Interfaces 6 480

    [24]

    Reydellet J, Balkanski M, Trivich D 1972 Phys. Stat. Sol. 52 175

    [25]

    Balamurugan B, Mehta B R, Avasthi D K, Singh F, Arora A K, Rajalakshmi M, Raghavan G, Tyagi A K, Shivaprasad S M 2002 J. Appl. Phys. 92 3304

    [26]

    Martin L, Martinez H, Poinot D, Pecquenard B, Cras F L 2013 J. Phys. Chem. C 117 4421

    [27]

    Niveditha C V, Fatima M J J, Sindhu S 2016 J. Electrochem. Soc. 163 H426

    [28]

    Nikesha V V, Mandaleb A B, Patilb K R, Mahamuni S 2005 Mater. Res. Bull. 40 694

    [29]

    Visalakshi S, Kannan R, Valanarasu S, Kim H S, Kathalingam A, Chandramohan R 2015 Appl. Phys. A 120 1105

    [30]

    Hu F, Chan K C, Yue T M, Surya C 2014 Thin Solid Films 550 17

    [31]

    Khan M A, Mahmood H, Ahmed R N, Khan A A, Mahboobullah, Iqbal T, Ishaque A, Mofeed R 2016 J. Nano Res. 40 1

    [32]

    Hsu C C, Wu C H, Wang S Y 2016 J. Alloys Compd. 663 262

    [33]

    Dolai S, Das S, Hussain S, Bhar R, Pal A K 2017 Vacuum 141 296

    [34]

    Nejand B A, Ahmadi V, Shahverdi H R 2015 ACS Appl. Mater. Interfaces 7 21807

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S 2017 Science 356 1376

    [3]

    Li M H, Yum J H, Moon S J, Chen P 2016 Energies 9 331

    [4]

    Cai Q, Li H, Jiang Y, Tu L, Ma L, Wu X, Yang S, Shi Z, Zang J, Chen Y 2018 Sol. Energy 159 786

    [5]

    Bakr Z H, Wali Q, Fakharuddin A, Schmidt-Mende L, Browne T M, Jose R 2017 Nano Energy 34 271

    [6]

    You J B, Meng L, Song T B, et al. 2016 Nat. Nanotechnol. 11 75

    [7]

    Brinkmann K O, Zhao J, Pourdavoud N, Becker T, Hu T, Olthof S, Meerholz K, Hoffmann L, Gahlmann T, Heiderhoff R, Oszajca M F, Luechinger N A, Rogalla D, Chen Y, Cheng B, Riedl T 2017 Nat. Commun. 8 13938

    [8]

    Li B S, Akimoto K, Shen A 2009 J. Cryst. Growth 311 1102

    [9]

    Xu Y, Jiao X, Chen D 2008 J. Phys. Chem. C 112 16769

    [10]

    Malerba C, Biccari F, Ricardo C L A, D’Incau M, Scardi P, Mittiga A 2011 Sol. Energy Mater. Sol. Cells 95 2848

    [11]

    Guo Y, Lei H, Xiong L, Li B, Chen Z, Wen J, Yang G, Li G, Fang G 2017 J. Mater. Chem. A 5 11055

    [12]

    Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370

    [13]

    Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 Chemsuschem 9 302

    [14]

    Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173

    [15]

    Zuo C, Ding L 2015 Small 11 5528

    [16]

    Sun W, Li Y, Ye S, Rao H, Yan W, Peng H, Li Y, Liu Z, Wang S, Chen Z, Xiao L, Bian Z, Huang C 2016 Nanoscale 8 10806

    [17]

    Rao H, Ye S, Sun W, Yan W, Li Y, Peng H, Liu Z, Bian Z, Li Y, Huang C 2016 Nano Energy 27 51

    [18]

    Moghtaderi B 2010 Energy Fuels 24 190

    [19]

    Gan J, Venkatachalapathy V, Svensson B G, Monakhov E V 2015 Thin Solid Films 594 250

    [20]

    Shang Y, Shao Y M, Zhang D F, Guo L 2014 Angew. Chem. Int. Ed. 53 11514

    [21]

    Liu A, Liu G, Zhu C, Zhu H, Fortunato E, Martins R, Shan F 2016 Adv. Electron. Mater. 2 1600140

    [22]

    Zhang H, Zhang D, Guo L, Zhang R, Yin P, Wang R 2008 J. Nanosci. Nanotechnol. 8 6332

    [23]

    Li C, Li Y, Delaunay J J 2014 ACS Appl. Mater. Interfaces 6 480

    [24]

    Reydellet J, Balkanski M, Trivich D 1972 Phys. Stat. Sol. 52 175

    [25]

    Balamurugan B, Mehta B R, Avasthi D K, Singh F, Arora A K, Rajalakshmi M, Raghavan G, Tyagi A K, Shivaprasad S M 2002 J. Appl. Phys. 92 3304

    [26]

    Martin L, Martinez H, Poinot D, Pecquenard B, Cras F L 2013 J. Phys. Chem. C 117 4421

    [27]

    Niveditha C V, Fatima M J J, Sindhu S 2016 J. Electrochem. Soc. 163 H426

    [28]

    Nikesha V V, Mandaleb A B, Patilb K R, Mahamuni S 2005 Mater. Res. Bull. 40 694

    [29]

    Visalakshi S, Kannan R, Valanarasu S, Kim H S, Kathalingam A, Chandramohan R 2015 Appl. Phys. A 120 1105

    [30]

    Hu F, Chan K C, Yue T M, Surya C 2014 Thin Solid Films 550 17

    [31]

    Khan M A, Mahmood H, Ahmed R N, Khan A A, Mahboobullah, Iqbal T, Ishaque A, Mofeed R 2016 J. Nano Res. 40 1

    [32]

    Hsu C C, Wu C H, Wang S Y 2016 J. Alloys Compd. 663 262

    [33]

    Dolai S, Das S, Hussain S, Bhar R, Pal A K 2017 Vacuum 141 296

    [34]

    Nejand B A, Ahmadi V, Shahverdi H R 2015 ACS Appl. Mater. Interfaces 7 21807

  • [1] 商文丽, 王立坤, 张晓春, 岳鑫, 李一锋, 万政慧, 杨华翼, 李婷, 王辉. 基于埋底界面修饰策略制备正式钙钛矿太阳电池的研究. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241549
    [2] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [4] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展. 物理学报, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [8] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [9] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [10] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [11] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [12] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [13] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [14] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [15] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [16] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [17] 刘华松, 季一勤, 姜玉刚, 王利栓, 冷健, 孙鹏, 庄克文. SiO2薄膜内部短程有序微结构研究. 物理学报, 2013, 62(18): 187801. doi: 10.7498/aps.62.187801
    [18] 罗银燕, 朱贤方. 电阻热蒸发镀膜与电子束蒸发镀膜对纳米球刻蚀方法制备二维银纳米阵列结构的影响. 物理学报, 2011, 60(8): 086104. doi: 10.7498/aps.60.086104
    [19] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性. 物理学报, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [20] 阎志军, 王印月, 徐 闰, 蒋最敏. 电子束蒸发制备HfO2高k薄膜的结构特性. 物理学报, 2004, 53(8): 2771-2774. doi: 10.7498/aps.53.2771
计量
  • 文章访问数:  6673
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-16
  • 修回日期:  2017-12-13
  • 刊出日期:  2018-03-05

/

返回文章
返回