-
近年来,气候变化对地球的生态环境产生严重影响,而大气温室气体在气候变化中具有重要的作用.一氧化二氮(N2O)作为一种重要的温室气体,其浓度变化对大气环境产生重要影响,因此对其浓度的探测在大气环境研究中具有重要意义.本文开展了基于中国自主研发的7.6 m中红外量子级联激光的共振型光声光谱探测N2O的研究,建立了N2O光声光谱传感实验系统.此系统在传统的光声光谱探测的基础上优化改进,采用双光束增强的方式,增加了有效光功率,进一步提高了系统的探测灵敏度.探测系统以1307.66 cm-1处的N2O吸收谱线作为探测对象,结合波长调制技术对N2O气体进行探测研究.通过对一定浓度的N2O气体在不同调制频率和调制振幅的光声信号的探测,确定了系统的最佳调制频率和调制振幅分别为800 Hz和90 mV.在最优实验条件下对不同浓度的N2O气体进行了测量,获得了系统的信号浓度定标曲线.实验表明,在锁相积分时间为30 ms时,系统的浓度探测极限为15010-9.通过100次平均后,系统噪声进一步降低,实现了大气N2O的探测,浓度探测极限达到了3710-9.Atmospheric greenhouse gases have great influence on the climate forcing, which is important to human being and also for natural systems. Nitrous oxide (N2O), such as carbon dioxide and methane, is an important greenhouse gas. It plays an important role in the atmospheric environment. Therefore, sensitive measurement of N2O concentration is of significance for studying the atmospheric environment. In this paper, a photoacoustic spectroscopy (PAS) system based on 7.6 m mid infrared quantum cascade laser combined with resonant PAS technique is established for the sensitive detection of N2O concentration. The PAS has been regarded as a highly sensitive and selective technique to measure trace gases. Compared with laser absorption spectroscopy, the PAS offers several intrinsic attractive features including ultra-compact size and no cross-response of light scattering. In addition, the signal of PAS is recorded with low-cost wavelength-independent acoustic transducer. The performance of the developed system is optimized and improved based on the traditional photoacoustic spectroscopic detection. Dual beam enhancement method is used to increase the effective optical power which effectively improves the detection sensitivity of the system. The N2O absorption line at 1307.66 cm-1 is chosen as the target line, and an operation pressure of 50 kPa is selected for reducing cross-talking from H2O absorption line. By detecting the photoacoustic signals of a certain concentration of N2O at different modulation frequencies and modulation amplitudes, the optimal modulation frequency and modulation amplitude of the system are determined to be 800 Hz and 90 mV, respectively. Different concentrations of N2O gas are detected under the optimized parameters, and calibration curve of the system, that is, the curve of photoacoustic signal versus concentration of N2O is obtained, which shows good linearity. The experimental results show that the minimum detection limit of the system is 150 ppb at a pressure of 50 kPa with an integration time of 30 ms. The system noise can be further reduced by increasing the averaging time. A minimum detection limit of 37 ppb is achieved by averaging signals 100 times, and the signal of N2O in the atmosphere is obtained.
[1] Montzka S A, Dlugokencky E J, Butler J H 2011 Nature 476 43
[2] Ravishankara A R, Daniel J S, Portmann R W 2009 Science 326 123
[3] Grossel A, Zeninari V, Parvitte B, Joly L, Courtois D 2007 Appl. Phys. B 88 483
[4] Solomon S, Qing D H, Manning M, Marquis M, Averyt K, Tignor M, Miller H L, Chen Z L 2007 Climate Change 2007:The Physical Science Basis (Cambridge:Cambridge University Press) pp128-130
[5] Bozki Z, Pogany A, Szabo G 2011 Appl. Spectrosc. Rev. 46 1
[6] Meyer P L, Sigrist M W 1990 Rev. Sci. Instrum. 61 1779
[7] Narasimhan L R, Goodman W, Patel C K N 2001 Proc. Natl. Acad. Sci. USA 98 4617
[8] Kerr E L, Atwood J G 1968 Appl. Opt. 7 915
[9] Kreuzer L B 1971 J. Appl. Phys. 42 2934
[10] Wynn C M, Palmacci S T, Clark M L, Kunz R R 2014 Opt. Eng. 53 021103
[11] Curl R F, Tittel F K 2002 Annu. Rep. Prog. Chem. C:Phys. Chem. 98 219
[12] Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902
[13] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594
[14] Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sensor Actuat B:Chem. 251 632
[15] Liu Q, Wang G S, Liu K, Chen W D, Zhu W Y, Huang Y B, Gao X M 2014 Infrared Laser Eng. 43 3010 (in Chinese)[刘强, 王贵师, 刘锟, 陈卫东, 朱文越, 黄印博, 高晓明 2014 红外与激光工程 43 3010]
[16] Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum. 81 103103.
[17] Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sensor Actuat B:Chem. 221 666
[18] Zha S L, Liu K, Zhu G D, Tan T, Wang L, Wang G S, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 2673 (in Chinese)[査申龙, 刘锟, 朱公栋, 谈图, 汪磊, 王贵师, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 2673]
[19] Nelson D D, McManus B, Urbanski S 2004 Spectrochim. Acta A 60 3325
[20] Yu Y J, Sanchez N P, Griffin R J, Tittel F K 2016 Opt. Express 24 10391
[21] Tan T, Liu K, Wang G S, Wang L, Chen W D, Gao X M 2015 Acta Opt. Sin. 35 0230005 (in Chinese)[谈图, 刘锟, 王贵师, 汪磊, 陈卫东, 高晓明 2015 光学学报 35 0230005]
[22] Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139
[23] Zhang J C, Wang L J, Tan S, Chen J Y, Zhai S Q, Liu J Q, Liu F Q, Wang Z G 2012 IEEE Photon. Tech. L. 24 1100
-
[1] Montzka S A, Dlugokencky E J, Butler J H 2011 Nature 476 43
[2] Ravishankara A R, Daniel J S, Portmann R W 2009 Science 326 123
[3] Grossel A, Zeninari V, Parvitte B, Joly L, Courtois D 2007 Appl. Phys. B 88 483
[4] Solomon S, Qing D H, Manning M, Marquis M, Averyt K, Tignor M, Miller H L, Chen Z L 2007 Climate Change 2007:The Physical Science Basis (Cambridge:Cambridge University Press) pp128-130
[5] Bozki Z, Pogany A, Szabo G 2011 Appl. Spectrosc. Rev. 46 1
[6] Meyer P L, Sigrist M W 1990 Rev. Sci. Instrum. 61 1779
[7] Narasimhan L R, Goodman W, Patel C K N 2001 Proc. Natl. Acad. Sci. USA 98 4617
[8] Kerr E L, Atwood J G 1968 Appl. Opt. 7 915
[9] Kreuzer L B 1971 J. Appl. Phys. 42 2934
[10] Wynn C M, Palmacci S T, Clark M L, Kunz R R 2014 Opt. Eng. 53 021103
[11] Curl R F, Tittel F K 2002 Annu. Rep. Prog. Chem. C:Phys. Chem. 98 219
[12] Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902
[13] Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594
[14] Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sensor Actuat B:Chem. 251 632
[15] Liu Q, Wang G S, Liu K, Chen W D, Zhu W Y, Huang Y B, Gao X M 2014 Infrared Laser Eng. 43 3010 (in Chinese)[刘强, 王贵师, 刘锟, 陈卫东, 朱文越, 黄印博, 高晓明 2014 红外与激光工程 43 3010]
[16] Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum. 81 103103.
[17] Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sensor Actuat B:Chem. 221 666
[18] Zha S L, Liu K, Zhu G D, Tan T, Wang L, Wang G S, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 2673 (in Chinese)[査申龙, 刘锟, 朱公栋, 谈图, 汪磊, 王贵师, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 2673]
[19] Nelson D D, McManus B, Urbanski S 2004 Spectrochim. Acta A 60 3325
[20] Yu Y J, Sanchez N P, Griffin R J, Tittel F K 2016 Opt. Express 24 10391
[21] Tan T, Liu K, Wang G S, Wang L, Chen W D, Gao X M 2015 Acta Opt. Sin. 35 0230005 (in Chinese)[谈图, 刘锟, 王贵师, 汪磊, 陈卫东, 高晓明 2015 光学学报 35 0230005]
[22] Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139
[23] Zhang J C, Wang L J, Tan S, Chen J Y, Zhai S Q, Liu J Q, Liu F Q, Wang Z G 2012 IEEE Photon. Tech. L. 24 1100
计量
- 文章访问数: 7517
- PDF下载量: 286
- 被引次数: 0