搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金刚石NV色心的纳米尺度磁场测量和成像技术

王成杰 石发展 王鹏飞 段昌奎 杜江峰

引用本文:
Citation:

基于金刚石NV色心的纳米尺度磁场测量和成像技术

王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰

Nanoscale magnetic field sensing and imaging based on nitrogen-vacancy center in diamond

Wang Cheng-Jie, Shi Fa-Zhan, Wang Peng-Fei, Duan Chang-Kui, Du Jiang-Feng
PDF
导出引用
  • 纳米级分辨率的磁场测量和成像是磁学中的一种重要研究手段.金刚石中的单个氮-空位点缺陷电子自旋作为一种量子传感器,具有灵敏度高、原子级别尺寸、可工作在室温等诸多优势,灵敏度可以达到单核自旋级别,空间分辨率达到亚纳米.将这种磁测量技术与扫描成像技术结合,能够实现高灵敏度和高分辨率的磁场成像,定量地重构出杂散场.这种新型的磁成像技术可以给出磁学中多种重要的研究对象如磁畴壁、反铁磁序、磁性斯格明子的结构信息.随着技术的发展,基于氮-空位点缺陷的磁成像技术有望成为磁性材料研究的重要手段.
    Magnetic field measurement and imaging with nanometer resolution is a key tool in the study of magnetism. There have been several powerful techniques such as superconducting quantum interference device, hall sensor, electron microscopy, magnetic force microscopy and spin polarized scanning tunneling microscopy. However, they either have poor sensitivity or resolution, or need severe environment of cryogenic temperature or vacuum. The nitrogen-vacancy color center (NV center) in diamond, serving as a quantum magnetic sensor, has great advantages such as long decoherence time, atomic size, and ambient working conditions. The NV center consists of a substitutional nitrogen atom and an adjacent vacancy in diamond. Its electronic structure of ground state is a spin triplet. The spin state can be initialized to mS=0 state and read out by laser pulse, and coherently manipulated by microwave pulse. It is sensitive to the magnetic field by measuring the magnetic Zeeman splitting or quantum phase in quantum interferometer strategies. By using dynamical decoupling sequence to prolong the decoherence time, the sensitivities approach to nano tesla for a single NV center and pico tesla for the NV center ensemble, respectively. As a sensor with an atomic size, it reaches single-nuclear-spin sensitivity and sub-nanometer spatial resolution. Combining with scanning microscopy technology, it can accomplish high-sensitivity and high-resolution magnetic field imaging so that the stray field can be reconstructed quantitatively. The magnetic field is calculated from the two resonant frequencies by solving the Hamiltonian of NV center in order to obtain the value of stray field. Recently, this novel magnetic imaging technique has revealed the magnetization structures of many important objects in magnetism research. The polarity and chirality of magnetic vortex core are determined by imaging its stray field; laser induced domain wall hopping is observed quantitatively with a nanoscale resolution; non-linear antimagnetic order is imaged in real space by NV center. It was recently reported that magnetization of the magnetic skyrmion is imaged by NV center. The magnetization distribution is reconstructed from stray field imaging. With the topological number limited to one, the Nel type magnetization is uniquely determined. These results show that the magnetic imaging method has great advantages to resolve the emerging magnetic structure materials. The magnetic imaging technology based on the NV center will potentially become an important method to study magnetic materials under continuous development.
      通信作者: 王鹏飞, wpf@ustc.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB921800)、国家自然科学基金(批准号:81788101,11227901,11544012)、中国科学院(批准号:GJJSTD20170001,QYZDY-SSW-SLH004)、安徽省量子信息技术引导专项(批准号:AHY050000)和中央高校基本科研业务费专项资金资助的课题.
      Corresponding author: Wang Peng-Fei, wpf@ustc.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB921800), the National Natural Science Foundation of China (Grant Nos. 81788101, 11227901, 11544012), the CAS (Grant Nos. GJJSTD20170001, QYZDY-SSW-SLH004), the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY050000), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Kolkowitz S, Unterreithmeier Q P, Bennett S D, Lukin M D 2012 Phys. Rev. Lett. 109 137601

    [2]

    Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561

    [3]

    Shi F, Zhang Q, Wang P, Sun H, Wang J, Rong X, Chen M, Ju C, Reinhard F, Chen H, Wrachtrup J, Wang J, Du J 2015 Science 347 1135

    [4]

    Rondin L, Tetienne J P, Spinicelli P, Dal Savio C, Karrai K, Dantelle G, Thiaville A, Rohart S, Roch J F, Jacques V 2012 Appl. Phys. Lett. 100 153118

    [5]

    Lenef A, Rand S C 1996 Phys. Rev. B 53 13441

    [6]

    Goss J P, Jones R, Briddon P R, Davies G, Collins A T, Mainwood A, van Wyk J A, Baker J M, Newton M E, Stoneham A M, Lawson S C 1997 Phys. Rev. B 56 16031

    [7]

    Lenef A, Rand S C 1997 Phys. Rev. B 56 16033

    [8]

    Maze J R, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin M D 2011 New J. Phys. 13 025025

    [9]

    Acosta V M, Jarmola A, Bauch E, Budker D 2010 Phys. Rev. B 82 201202

    [10]

    Harrison J, Sellars M J, Manson N B 2004 J. Lumin. 107 245

    [11]

    Harrison J, Sellars M J, Manson N B 2006 Diam. Relat. Mater. 15 586

    [12]

    Rogers L J, Armstrong S, Sellars M J, Manson N B 2008 New J. Phys. 10 103024

    [13]

    Manson N, Rogers L, Doherty M, Hollenberg L 2010 arXiv:1011.2840 [cond-mat, physics:quant-ph]

    [14]

    van Oort E, Manson N B, Glasbeek M 1988 J. Phys. C: Solid State Phys. 21 4385

    [15]

    Neumann P 2012 Ph. D. Dissertation. (Stttgart: University Stttgart)

    [16]

    Hauf M V, Grotz B, Naydenov B, Dankerl M, Pezzagna S, Meijer J, Jelezko F, Wrachtrup J, Stutzmann M, Reinhard F, Garrido J A 2011 Phys. Rev. B 83 081304

    [17]

    Liu X, Wang G, Song X, Feng F, Zhu W, Lou L, Wang J, Wang H, Bao P 2012 Appl. Phys. Lett. 101 233112

    [18]

    Cui J M, Sun F W, Chen X D, Gong Z J, Guo G C 2013 Phys. Rev. Lett. 110 153901

    [19]

    Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R, Lukin M D 2008 Nat. Phys. 4 810

    [20]

    Wang P, Yuan Z, Huang P, Rong X, Wang M, Xu X, Duan C, Ju C, Shi F, Du J 2015 Nat.Commun. 6 6631

    [21]

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L, Lukin M D 2008 Nature 455 644

    [22]

    de Lange G, Rist D, Dobrovitski V V, Hanson R 2011 Phys. Rev. Lett. 106 080802

    [23]

    Wang P, Ju C, Shi F, Du J 2013 Chin. Sci. Bull. 58 2920

    [24]

    Epstein R J, Mendoza F M, Kato Y K, Awschalom D D 2005 Nat. Phys. 1 94

    [25]

    Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, Rabeau J R, Stavrias N, Greentree A D, Prawer S, Meijer J, Twamley J, Hemmer P R, Wrachtrup J 2006 Nat. Phys. 2 408

    [26]

    Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281

    [27]

    Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R, Lukin M D 2007 Science 316 1312

    [28]

    Zhao N, Hu J L, Ho S W, Wan J T K, Liu R B 2011 Nat. Nanotech. 6 242

    [29]

    Shi F, Kong X, Wang P, Kong F, Zhao N, Liu R B, Du J 2013 Nat. Phys. 10 21

    [30]

    Mller C, Kong X, Cai J M, Melentijević K, Stacey A, Markham M, Twitchen D, Isoya J, Pezzagna S, Meijer J, Du J F, Plenio M B, Naydenov B, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4703

    [31]

    Kong X, Stark A, Du J, McGuinness L P, Jelezko F 2015 Phys. Rev. Applied 4 024004

    [32]

    Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E, Awschalom D D 2010 Appl. Phys. Lett. 96 092504

    [33]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [34]

    Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M, Yacoby A 2012 Nat. Nanotech. 7 320

    [35]

    Rondin L, Tetienne J P, Rohart S, Thiaville A, Hingant T, Spinicelli P, Roch J F, Jacques V 2013 Nat. Commun. 4 2279

    [36]

    Tetienne J P, Hingant T, Rondin L, Rohart S, Thiaville A, Roch J F, Jacques V 2013 Phys. Rev. B 88 214408

    [37]

    Tetienne J P, Hingant T, Kim J V, Diez L H, Adam J P, Garcia K, Roch J F, Rohart S, Thiaville A, Ravelosona D, Jacques V 2014 Science 344 1366

    [38]

    Gross I, Akhtar W, Garcia V, Martnez L J, Chouaieb S, Garcia K, Carrtro C, Barthlmy A, Appel P, Maletinsky P, Kim J V, Chauleau J Y, Jaouen N, Viret M, Bibes M, Fusil S, Jacques V 2017 Nature 549 252

    [39]

    Grinolds M S, Hong S, Maletinsky P, Luan L, Lukin M D, Walsworth R L, Yacoby A 2013 Nat. Phys. 9 215

    [40]

    Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Bttner F, Walsworth R L, Beach G S D, Yacoby A 2016 arXiv:1611.00673 [cond-mat]

    [41]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [42]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X X 2016 Adv. Mater. 28 6887

    [43]

    van der Sar T, Casola F, Walsworth R, Yacoby A 2015 Nat. Commun. 6 7886

  • [1]

    Kolkowitz S, Unterreithmeier Q P, Bennett S D, Lukin M D 2012 Phys. Rev. Lett. 109 137601

    [2]

    Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561

    [3]

    Shi F, Zhang Q, Wang P, Sun H, Wang J, Rong X, Chen M, Ju C, Reinhard F, Chen H, Wrachtrup J, Wang J, Du J 2015 Science 347 1135

    [4]

    Rondin L, Tetienne J P, Spinicelli P, Dal Savio C, Karrai K, Dantelle G, Thiaville A, Rohart S, Roch J F, Jacques V 2012 Appl. Phys. Lett. 100 153118

    [5]

    Lenef A, Rand S C 1996 Phys. Rev. B 53 13441

    [6]

    Goss J P, Jones R, Briddon P R, Davies G, Collins A T, Mainwood A, van Wyk J A, Baker J M, Newton M E, Stoneham A M, Lawson S C 1997 Phys. Rev. B 56 16031

    [7]

    Lenef A, Rand S C 1997 Phys. Rev. B 56 16033

    [8]

    Maze J R, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin M D 2011 New J. Phys. 13 025025

    [9]

    Acosta V M, Jarmola A, Bauch E, Budker D 2010 Phys. Rev. B 82 201202

    [10]

    Harrison J, Sellars M J, Manson N B 2004 J. Lumin. 107 245

    [11]

    Harrison J, Sellars M J, Manson N B 2006 Diam. Relat. Mater. 15 586

    [12]

    Rogers L J, Armstrong S, Sellars M J, Manson N B 2008 New J. Phys. 10 103024

    [13]

    Manson N, Rogers L, Doherty M, Hollenberg L 2010 arXiv:1011.2840 [cond-mat, physics:quant-ph]

    [14]

    van Oort E, Manson N B, Glasbeek M 1988 J. Phys. C: Solid State Phys. 21 4385

    [15]

    Neumann P 2012 Ph. D. Dissertation. (Stttgart: University Stttgart)

    [16]

    Hauf M V, Grotz B, Naydenov B, Dankerl M, Pezzagna S, Meijer J, Jelezko F, Wrachtrup J, Stutzmann M, Reinhard F, Garrido J A 2011 Phys. Rev. B 83 081304

    [17]

    Liu X, Wang G, Song X, Feng F, Zhu W, Lou L, Wang J, Wang H, Bao P 2012 Appl. Phys. Lett. 101 233112

    [18]

    Cui J M, Sun F W, Chen X D, Gong Z J, Guo G C 2013 Phys. Rev. Lett. 110 153901

    [19]

    Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R, Lukin M D 2008 Nat. Phys. 4 810

    [20]

    Wang P, Yuan Z, Huang P, Rong X, Wang M, Xu X, Duan C, Ju C, Shi F, Du J 2015 Nat.Commun. 6 6631

    [21]

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L, Lukin M D 2008 Nature 455 644

    [22]

    de Lange G, Rist D, Dobrovitski V V, Hanson R 2011 Phys. Rev. Lett. 106 080802

    [23]

    Wang P, Ju C, Shi F, Du J 2013 Chin. Sci. Bull. 58 2920

    [24]

    Epstein R J, Mendoza F M, Kato Y K, Awschalom D D 2005 Nat. Phys. 1 94

    [25]

    Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, Rabeau J R, Stavrias N, Greentree A D, Prawer S, Meijer J, Twamley J, Hemmer P R, Wrachtrup J 2006 Nat. Phys. 2 408

    [26]

    Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281

    [27]

    Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R, Lukin M D 2007 Science 316 1312

    [28]

    Zhao N, Hu J L, Ho S W, Wan J T K, Liu R B 2011 Nat. Nanotech. 6 242

    [29]

    Shi F, Kong X, Wang P, Kong F, Zhao N, Liu R B, Du J 2013 Nat. Phys. 10 21

    [30]

    Mller C, Kong X, Cai J M, Melentijević K, Stacey A, Markham M, Twitchen D, Isoya J, Pezzagna S, Meijer J, Du J F, Plenio M B, Naydenov B, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4703

    [31]

    Kong X, Stark A, Du J, McGuinness L P, Jelezko F 2015 Phys. Rev. Applied 4 024004

    [32]

    Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E, Awschalom D D 2010 Appl. Phys. Lett. 96 092504

    [33]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [34]

    Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M, Yacoby A 2012 Nat. Nanotech. 7 320

    [35]

    Rondin L, Tetienne J P, Rohart S, Thiaville A, Hingant T, Spinicelli P, Roch J F, Jacques V 2013 Nat. Commun. 4 2279

    [36]

    Tetienne J P, Hingant T, Rondin L, Rohart S, Thiaville A, Roch J F, Jacques V 2013 Phys. Rev. B 88 214408

    [37]

    Tetienne J P, Hingant T, Kim J V, Diez L H, Adam J P, Garcia K, Roch J F, Rohart S, Thiaville A, Ravelosona D, Jacques V 2014 Science 344 1366

    [38]

    Gross I, Akhtar W, Garcia V, Martnez L J, Chouaieb S, Garcia K, Carrtro C, Barthlmy A, Appel P, Maletinsky P, Kim J V, Chauleau J Y, Jaouen N, Viret M, Bibes M, Fusil S, Jacques V 2017 Nature 549 252

    [39]

    Grinolds M S, Hong S, Maletinsky P, Luan L, Lukin M D, Walsworth R L, Yacoby A 2013 Nat. Phys. 9 215

    [40]

    Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Bttner F, Walsworth R L, Beach G S D, Yacoby A 2016 arXiv:1611.00673 [cond-mat]

    [41]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [42]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X X 2016 Adv. Mater. 28 6887

    [43]

    van der Sar T, Casola F, Walsworth R, Yacoby A 2015 Nat. Commun. 6 7886

  • [1] 田礼漫, 温永立, 王云飞, 张善超, 李建锋, 杜镜松, 颜辉, 朱诗亮. 路径积分传播子测量的研究进展. 物理学报, 2023, 72(20): 200305. doi: 10.7498/aps.72.20230902
    [2] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [3] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石NV色心的温度传感. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211822
    [4] 李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊. 基于磁集聚效应的系综NV色心磁检测增强. 物理学报, 2021, 70(14): 147601. doi: 10.7498/aps.70.20210129
    [5] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏. 基于辅助单比特测量的量子态读取算法. 物理学报, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [6] 温永立, 张善超, 颜辉, 朱诗亮. 无指针δ-淬火直接测量法测量量子密度矩阵. 物理学报, 2021, 70(11): 110301. doi: 10.7498/aps.70.20210269
    [7] 巩龙延, 杨慧, 赵生妹. 中间测量对受驱单量子比特统计复杂度的影响. 物理学报, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [8] 周大方, 蒋式勤, 赵晨, Petervan Leeuwen. P波间期的心脏电流源重建及电活动磁成像. 物理学报, 2019, 68(13): 138701. doi: 10.7498/aps.68.20190005
    [9] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [10] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究. 物理学报, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [11] 廖庆洪, 叶杨, 李红珍, 周南润. 金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究. 物理学报, 2018, 67(4): 040302. doi: 10.7498/aps.67.20172170
    [12] 任雅娜, 杨保东, 王杰, 杨光, 王军民. 铯原子7S1/2态磁偶极超精细常数的测量. 物理学报, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [13] 张凯, 仲佳勇, 裴晓星, 李玉同, 阪和洋一, 魏会冈, 袁大伟, 李芳, 韩波, 王琛, 贺昊, 尹传磊, 廖国前, 方远, 杨骕, 远晓辉, 梁贵云, 王菲鹿, 朱健强, 丁永坤, 张杰, 赵刚. 激光驱动磁重联过程中的喷流演化和电子能谱测量. 物理学报, 2015, 64(16): 165201. doi: 10.7498/aps.64.165201
    [14] 周林, 蒋世伦, 祁建敏, 王立宗. 反冲质子磁分析技术用于氘氚中子能谱测量研究. 物理学报, 2012, 61(7): 072902. doi: 10.7498/aps.61.072902
    [15] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量. 物理学报, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [16] 鄢 芬, 崔明启, 陈 凯, 孙立娟, 席识博, 周克瑾, 郑 雷, 赵屹东, 王占山, 朱京涛, 张 众, 赵 佳. 基于多层膜偏振元件的软X射线磁光Faraday偏转测量. 物理学报, 2008, 57(5): 2860-2865. doi: 10.7498/aps.57.2860
    [17] 王彦华, 杨海菁, 张天才, 王军民. 用吸收法对铯原子磁光阱中冷原子数目的测量. 物理学报, 2006, 55(7): 3403-3407. doi: 10.7498/aps.55.3403
    [18] 郑永真, 齐昌炜, 丁玄同, 郦文忠. 托卡马克等离子体中内部磁扰动的测量研究. 物理学报, 2006, 55(1): 294-298. doi: 10.7498/aps.55.294
    [19] 黄仙山, 谢双媛, 羊亚平. 量子测量对三维光子晶体中Λ型原子动力学性质的影响. 物理学报, 2006, 55(5): 2269-2274. doi: 10.7498/aps.55.2269
    [20] 胡学宁, 李新奇. 量子点接触对单电子量子态的量子测量. 物理学报, 2006, 55(7): 3259-3264. doi: 10.7498/aps.55.3259
计量
  • 文章访问数:  13513
  • PDF下载量:  943
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-31
  • 修回日期:  2018-04-13
  • 刊出日期:  2018-07-05

/

返回文章
返回