搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斯格明子电子学的研究进展

赵巍胜 黄阳棋 张学莹 康旺 雷娜 张有光

引用本文:
Citation:

斯格明子电子学的研究进展

赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光

Overview and advances in skyrmionics

Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang
PDF
导出引用
  • 在过去的半个世纪中,微电子技术一直沿着著名的摩尔定律快速发展,当前已经达到单芯片可集成上百亿晶体管.然而随着晶体管尺寸的缩小,因量子效应所产生的漏电流及其所导致的热效应使得这一定律遇到瓶颈.自旋电子技术由于引入了电子自旋这一全新的自由度,将有望大幅度降低器件功耗,突破热效应枷锁.斯格明子是一种具有拓扑保护的类粒子自旋结构,有望成为下一代自旋电子信息载体,引起了从物理到电子领域的广泛关注.由于其特殊的拓扑性质,斯格明子具备尺寸小、结构稳定、驱动阈值电流小等诸多优点,室温下斯格明子的成核、输运及探测进一步验证了其广泛的应用潜力,由此诞生了研究相关器件及应用的斯格明子电子学.本综述从电子学角度首先介绍斯格明子的基础概念及发展现状、理论及实验研究方法,重点阐述斯格明子器件的写入、调控及读取功能,介绍了一系列具有代表性的新型信息器件;最后,结合斯格明子电子学现状分析了目前所面临的发展瓶颈以及未来的应用前景.
    Microelectronic technologies have been developing rapidly in the past half-century following the famous Moore's Law. However, this tendency is beginning to break down due to the thermal effects induced by the leakage current and data traffic. Spintronics sheds light on eliminating this bottleneck by using the spin degree of electron, which attracts great attention from both the academia and industry. The magnetic skyrmion is a particle-like spin texture with topological protection, envisioned as an energy efficient spintronic information carrier due to its nanoscale size, ultra-low driven energy, and high thermal stability. Recent research progress shows that the nucleation, transportation, and detection of skyrmion in room temperature, which affirm its potential application in electronics, lead to a new research field called skyrmionics. In this review article, we first introduce the fundamental concepts and recent progress of magnetic skyrmions, from both the theoretical and experimental point of view. Different types of magnetic skyrmions have different properties due to their physical dynamics. We only focus on the skyrmions stabilized by Dzyaloshinskii-Moriya interaction (DMI) in the ultra-thin film structures as their small size, high mobility and room temperature stability can provide the perspectives for electronic devices. The skyrmions have already been extensively investigated from both the theoretical and experimental aspects in recent years. Micromagnetic simulation is the main approach to theoretically studying the dynamics of skyrmions and their applications. Most of the innovative skyrmionic devices have first been demonstrated by this method. Experimentally, skyrmions can be measured by various methods, such as the neutron scattering, Lorentz transmission electron microscopy, scanning X-ray transmission microscopy, polar magneto-optical Kerr effect microscope, etc. In the third part of this paper, we present four basic functions of skyrmionic devices ranging from nucleation, motion, detection, to manipulation. The nucleation of skyrmions, corresponding to the information writing in skyrmionic devices, has been widely investigated. A skyrmion can be nucleated by conversion from domain wall pairs, local spin injection, local heating, and spin waves. Then, we focus on the current induced skyrmion motion and compare the two different torques:the spin transfer torque and the spin orbit torque. To read the data, it is necessary to detect skyrmions electrically. One way is to measure the topological Hall effect in a Hall bar. More commonly, skyrmions can be detected through magnetoresistance effects, i.e., giant magnetoresistance/anisotropic magnetoresistance, tunnel magnetore sistance, and non-collinear magnetoresistance, in a junction geometry. For manipulation, it is mainly demonstrated by the voltage controlled magnetic anisotropy (VCMA). Finally we discuss several representative skyrmionic nano-devices in memory, logic, and neuromorphic applications. The magnetic tunnel junction and the racetrack are two common designs for skyrmionic memory devices. The former can store multiple values in one bit, and the latter can realize fast and efficient data transmission. To control the skyrmionic data in these memories, the VCMA effect is one of the promising approaches, which is used in several designs. For the skyrmionic logic devices, they can be divided into two main types:the transistor and the logic gate. However, until now, these ideas are only demonstrated in simulation, and more efforts in experiment are needed. Besides, novel devices such as artificial synapses and neurons can be realized more naturally by skyrmion due to its particle-like property. In summary, skyrmionics is promising in several aspects, including performance improvement, emerging function and architecture design, and bio-inspired computing. Remarkable progress has been made in the past few years, however the device integration, the materials, and the data transmission still restrict its application. We hope this overview article may present a clear picture about skyrmionics and receive more attention, thus promoting its fast research and development in the future.
      通信作者: 赵巍胜, Weisheng.zhao@buaa.edu.cn
    • 基金项目: 高等学校学科创新引智计划(批准号:B16001)、国家科技部国际科技合作与交流项目(批准号:2015DFE12880)和国家自然科学基金(批准号:61501013,61627813,61571023)资助的课题.
      Corresponding author: Zhao Wei-Sheng, Weisheng.zhao@buaa.edu.cn
    • Funds: Project supported by the Program of Introducing Talents of Discipline to Universities in China (Grant No. B16001), the International Collaboration Project from the Ministry of Science and Technology in China (Grant No. 2015DFE12880), and the National Natural Science Foundation of China (Grant Nos. 61501013, 61627813, 61571023).
    [1]

    Moore G E 1965 Electronics 38 114

    [2]

    Waldrop M M 2016 Nature 530 144

    [3]

    Baibich M N, Broto J M, Fert A, van Dau F N, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [4]

    Fert A 2008 Rev. Mod. Phys. 80 1517

    [5]

    Julliere M 1975 Phys. Lett. A 54 225

    [6]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862

    [7]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868

    [8]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508

    [9]

    Albert F J, Katine J A, Buhrman R A, Ralph D C 2000 Appl. Phys. Lett. 77 3809

    [10]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149

    [11]

    Borge J, Gorini C, Vignale G, Raimondi R 2015 Acta Phys. Pol. A 127 457

    [12]

    Jamali M, Narayanapillai K, Qiu X, Loong L M, Manchon A, Yang H 2013 Phys. Rev. Lett. 111 246602

    [13]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213

    [14]

    You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 Proc. Natl. Acad. Sci.USA 112 10310

    [15]

    Zhao W, Wang Z, Peng S, Wang L, Chang L, Zhang Y 2016 Sci. Sin. Phys. Mech. Astron. 46 107306

    [16]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [17]

    Wright D C, Mermin N D 1989 Rev. Mod. Phys. 61 385

    [18]

    Ho T L 1998 Phys. Rev. Lett. 81 742

    [19]

    Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Phys. Rev. B 47 16419

    [20]

    Belavin A A, Polyakov A M 1975 JETP Lett. 22 503

    [21]

    Abanov A, Pokrovsky V L 1998 Phys. Rev. B 58 R8889

    [22]

    Yang K, Moon K, Zheng L, MacDonald A H, Girvin S M, Yoshioka D, Zhang S C 1994 Phys. Rev. Lett. 72 732

    [23]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [24]

    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [25]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [26]

    Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202

    [27]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [28]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [29]

    Du H, Degrave J P, Xue F, Liang D, Ning W, Yang J, Tian M, Zhang Y, Jin S 2014 Nano Lett. 14 2026

    [30]

    Zhao X, Jin C, Wang C, Du H, Zang J, Tian M, Che R, Zhang Y 2016 Proc. Natl. Acad. Sci. USA 113 4918

    [31]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152

    [32]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839

    [33]

    Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444

    [34]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [35]

    Chen G, Mascaraque A, N'Diaye A T, Schmid A K 2015 Appl. Phys. Lett. 106 242404

    [36]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [37]

    Zhang X, Ezawa M, Zhou Y 2016 Phys. Rev. B 94 064406

    [38]

    Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q L, Wu H, Li W, Jiang W, Han X, Li X, Bleszynski Jayich A C, Amiri P K, Wang K L 2018 Nano Lett. 18 980

    [39]

    Tokunaga Y, Yu X Z, White J S, Rnnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638

    [40]

    Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rnnow H M, Tokura Y, Taguchi Y 2016 Nat. Mater. 15 1237

    [41]

    Li W, Jin C, Che R, Wei W, Lin L, Zhang L, Du H, Tian M, Zang J 2016 Phys. Rev. B 93 060409

    [42]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [43]

    Zhang X, Ezawa M, Zhou Y 2015 Sci. Rep. 5 9400

    [44]

    Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N, You L 2018 Nano Lett. 18 1180

    [45]

    Huang Y, Kang W, Zhang X, Zhou Y, Zhao W 2016 Nanotechnology 28 08LT02

    [46]

    Li S, Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2017 Nanotechnology 28 31LT01

    [47]

    Chen X, Kang W, Zhu D, Zhang X, Lei N, Zhang Y, Zhou Y, Zhao W 2018 Nanoscale 10 6139

    [48]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [49]

    Wiesendanger R 2016 Nat. Rev. Mater. 1 16044

    [50]

    Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2016 Proc. IEEE 104 2040

    [51]

    Lin Y S, Grundy P J, Giess E A 1973 Appl. Phys. Lett. 23 485

    [52]

    Garel T, Doniach S 1982 Phys. Rev. B 26 325

    [53]

    Takao S 1983 J. Magn. Magn. Mater. 3134 1009

    [54]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [55]

    Moriya T 1960 Phys. Rev. 120 91

    [56]

    Okubo T, Chung S, Kawamura H 2012 Phys. Rev. Lett. 108 017206

    [57]

    Fert A R 1990 Mater. Sci. Forum 5960 439

    [58]

    Fert A, Levy P M 1980 Phys. Rev. Lett. 44 1538

    [59]

    Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Nat. Nanotechnol. 8 723

    [60]

    Braun H B 2012 Adv. Phys. 6 1

    [61]

    Kim B S, Shapere A D 2016 Phys. Rev. Lett. 117 116805

    [62]

    Yi S D, Onoda S, Nagaosa N, Han J H 2009 Phys. Rev. B 80 054416

    [63]

    Shiomi Y, Kanazawa N, Shibata K, Onose Y, Tokura Y 2013 Phys. Rev. B 88 064409

    [64]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotechnol. 8 742

    [65]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411

    [66]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [67]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X X 2016 Adv. Mater. 28 6887

    [68]

    Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovcs A, Zang J, Tian M, Zhang Y, Du H, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205

    [69]

    Koshibae W, Nagaosa N 2016 Nat. Commun. 7 10542

    [70]

    Shen M, Zhang Y, Ou-Yang J, Yang X, You L 2018 Appl. Phys. Lett. 112 062403

    [71]

    Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M 2016 Phys. Rev. B 94 094420

    [72]

    Komineas S, Papanicolaou N 2015 Phys. Rev. B 92 174405

    [73]

    Brown W F 1978 J. Appl. Phys. 49 1937

    [74]

    Gilbert T L 1955 Phys. Rev. 100 1243

    [75]

    Landau L, Lifshits E 1935 Phys. Zeitsch. der Sow. 8 153

    [76]

    Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 990

    [77]

    Khvalkovskiy A V, Cros V, Apalkov D, Nikitin V, Krounbi M, Zvezdin K A, Anane A, Grollier J, Fert A 2013 Phys. Rev. B 87 020402

    [78]

    Mehlin A, Xue F, Liang D, Du H F, Stolt M J, Jin S, Tian M L, Poggio M 2015 Nano Lett. 15 4839

    [79]

    Yu X, Degrave J P, Hara Y, Hara T, Jin S, Tokura Y 2013 Nano Lett. 13 3755

    [80]

    Wang C, Du H, Zhao X, Jin C, Tian M, Zhang Y, Che R 2017 Nano Lett. 17 2921

    [81]

    Jin C M, Du H F 2015 Chin. Phys. B 24 128501

    [82]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [83]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Menteș T O, Sala A, Buda-Prejbeanu L D, Klein O et al. 2016 Nat. Nanotechnol. 11 449

    [84]

    Milde P, Kohler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Muhlbauer S, Pfleiderer C, Buhrandt S, Schutte C, Rosch A 2013 Science 340 1076

    [85]

    Legrand W, Maccariello D, Reyren N, Garcia K, Moutafis C, Moreau-Luchaire C, Collin S, Bouzehouane K, Cros V, Fert A 2017 Nano Lett. 17 2703

    [86]

    Du H, Ning W, Tian M, Zhang Y 2013 Phys. Rev. B 87 014401

    [87]

    Zhang L, Menzel D, Jin C, Du H, Ge M, Zhang C, Pi L, Tian M, Zhang Y 2015 Phys. Rev. B 91 024403

    [88]

    Zhang L, Han H, Ge M, Du H, Jin C, Wei W, Fan J, Zhang C, Pi L, Zhang Y 2016 Sci. Rep. 6 22397

    [89]

    Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201

    [90]

    Du H, Liang D, Jin C, Kong L, Stolt M J, Ning W, Yang J, Xing Y, Wang J, Che R, Zang J, Jin S, Zhang Y, Tian M 2015 Nat. Commun. 6 7637

    [91]

    Li Z A, Zheng F, Tavabi A H, Caron J, Jin C, Du H, Kovcs A, Tian M, Farle M, Dunin-Borkowski R E 2017 Nano Lett. 17 1395

    [92]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [93]

    Jin C, Li Z A, Kovcs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blgel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski R E 2017 Nat. Commun. 8 15569

    [94]

    Koshibae W, Nagaosa N 2014 Nat. Commun. 5 5148

    [95]

    Finazzi M, Savoini M, Khorsand A R, Tsukamoto A, Itoh A, Du L, Kirilyuk A, Rasing T, Ezawa M 2013 Phys. Rev. Lett. 110 177205

    [96]

    Liu Y, Yin G, Zang J, Shi J, Lake R K 2015 Appl. Phys. Lett. 107 152411

    [97]

    Du H, Ning W, Tian M, Zhang Y 2013 Europhys. Lett. 101 37001

    [98]

    Liu Y, Du H, Jia M, Du A 2015 Phys. Rev. B 91 094425

    [99]

    Liu Y, Yan H, Jia M, Du H, Du A 2016 Appl. Phys. Lett. 109 102402

    [100]

    Kang W, Huang Y, Zheng C, L W, Lei N, Zhang Y, Zhang X, Zhou Y, Zhao W 2016 Sci. Rep. 6 23164

    [101]

    Xia J, Huang Y, Zhang X, Kang W, Zheng C, Liu X, Zhao W, Zhou Y 2017 J. Appl. Phys. 122 153901

    [102]

    Zhang X, Zhou Y, Ezawa M 2016 Phys. Rev. B 93 024415

    [103]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [104]

    Hsu P J, Kubetzka A, Finco A, Romming N, von Bergmann K, Wiesendanger R 2016 Nat. Nanotechnol. 12 123

    [105]

    Zhou Y, Ezawa M 2014 Nat. Commun. 5 4652

    [106]

    Heinonen O, Jiang W, Somaily H, te Velthuis S G E, Hoffmann A 2016 Phys. Rev. B 93 094407

    [107]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981

    [108]

    Volovik G E 1987 J. Phys. C: Solid State Phys. 20 L83

    [109]

    Yang S A, Beach G S D, Knutson C, Xiao D, Niu Q, Tsoi M, Erskine J L 2009 Phys. Rev. Lett. 102 067201

    [110]

    Hai P N, Ohya S, Tanaka M, Barnes S E, Maekawa S 2009 Nature 458 489

    [111]

    Barnes S E, Maekawa S 2007 Phys. Rev. Lett. 98 246601

    [112]

    Everschor-Sitte K, Sitte M 2014 J. Appl. Phys. 115 172602

    [113]

    Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Nat. Phys. 8 301

    [114]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463

    [115]

    Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202

    [116]

    Zang J, Mostovoy M, Han J H, Nagaosa N 2011 Phys. Rev. Lett. 107 136804

    [117]

    Lin S Z, Reichhardt C, Batista C D, Saxena A 2013 Phys. Rev. B 87 214419

    [118]

    Thiele A A 1973 Phys. Rev. Lett. 30 230

    [119]

    Thiele A A 1974 J. Appl. Phys. 45 377

    [120]

    Thiele A A 1969 Bell Syst. Tech. J. 48 3287

    [121]

    Stone M 1996 Phys. Rev. B: Condens. Matter Mater. Phys. 53 16573

    [122]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [123]

    Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [124]

    Zhang X, Xia J, Zhao G P, Liu X, Zhou Y 2016 IEEE Trans. Magn. 53 1500206

    [125]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2015 Sci. Rep. 4 6784

    [126]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2017 Nat. Phys. 13 162

    [127]

    Litzius K, Lemesh I, Krger B, Bassirian P, Caretta L, Richter K, Bttner F, Sato K, Tretiakov O A, Frster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schtz G, Beach G S D, Klui M 2017 Nat. Phys. 13 170

    [128]

    Chen X, Kang W, Zhu D, Zhang X, Lei N, Zhang Y, Zhou Y, Zhao W 2017 Appl. Phys. Lett. 111 202406

    [129]

    Upadhyaya P, Yu G, Amiri P K, Wang K L 2015 Phys. Rev. B 92 134411

    [130]

    Zhang Y, Luo S, Yan B, Ou-Yang J, Yang X, Chen S, Zhu B, You L 2017 Nanoscale 9 10212

    [131]

    Kong L, Zang J 2013 Phys. Rev. Lett. 111 67203

    [132]

    Mochizuki M, Yu X Z, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y, Nagaosa N 2014 Nat. Mater. 13 241

    [133]

    Wang C, Xiao D, Chen X, Zhou Y, Liu Y 2017 New J. Phys. 19 083008

    [134]

    Zhang X, Ezawa M, Xiao D, Zhao G P, Liu Y, Zhou Y 2015 Nanotechnology 26 225701

    [135]

    Ding J, Yang X, Zhu T 2015 IEEE Trans. Magn. 51 1500504

    [136]

    Zhang X, Mller J, Xia J, Garst M, Liu X, Zhou Y 2017 New J. Phys. 19 065001

    [137]

    Li Z, Zhang Y, Huang Y, Wang C, Zhang X, Liu Y, Zhou Y, Kang W, Koli S C, Lei N 2018 J. Magn. Magn. Mater. 455 19

    [138]

    Wang X, Gan W L, Martinez J C, Tan F N, Jalil M B A, Lew W S 2018 Nanoscale 10 733

    [139]

    Liu Y, Lei N, Wang C, Zhang X, Kang W, Zhu D, Zhou Y, Liu X, Zhang Y, Zhao W 2018 Arxiv Prepr. 1803.05615

    [140]

    Yin G, Liu Y, Barlas Y, Zang J, Lake R K 2015 Phys. Rev. B 92 024411

    [141]

    Liang D, DeGrave J P, Stolt M J, Tokura Y, Jin S 2015 Nat. Commun. 6 8217

    [142]

    Crum D M, Bouhassoune M, Bouaziz J, Schweflinghaus B, Blgel S, Lounis S 2015 Nat. Commun. 6 8541

    [143]

    Hamamoto K, Ezawa M, Nagaosa N 2016 Appl. Phys. Lett. 108 112401

    [144]

    Koshibae W, Kaneko Y, Iwasaki J, Kawasaki M, Tokura Y, Nagaosa N 2015 Jpn. J. Appl. Phys. 54 053001

    [145]

    Hanneken C, Otte F, Kubetzka A, Dup B, Romming N, von Bergmann K, Wiesendanger R, Heinze S 2015 Nat. Nanotechnol. 10 1039

    [146]

    Li C H, van't Erve O M J, Robinson J T, Liu Y, Li L, Jonker B T 2014 Nat. Nanotechnol. 9 218

    [147]

    Bode M, Heinze S, Kubetzka A, Pietzsch O, Nie X, Bihlmayer G, Blgel S, Wiesendanger R 2002 Phys. Rev. Lett. 89 237205

    [148]

    Zhang S S L, Vignale G, Zhang S 2015 Phys. Rev. B 92 024412

    [149]

    Gould C, Rster C, Jungwirth T, Girgis E, Schott G M, Giraud R, Brunner K, Schmidt G, Molenkamp L W 2004 Phys. Rev. Lett. 93 117203

    [150]

    Liu G B, Li D, de Chatel P F, Wang J, Liu W, Zhang Z D 2016 Chin. Phys. B 25 067203

    [151]

    Zhang X, Zhou Y, Ezawa M, Zhao G P, Zhao W 2015 Sci. Rep. 5 11369

    [152]

    Zhang X, Cai W, Zhang X, Wang Z, Li Z, Zhang Y, Cao K, Lei N, Kang W, Zhang Y, Yu H, Zhou Y, Zhao W 2018 Arxiv Prepr. 1803.05138

    [153]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [154]

    Kang W, Zheng C, Huang Y, Zhang X, L W, Zhou Y, Zhao W 2017 IEEE Trans. Electron Devices 64 1060

    [155]

    Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K, Wang K L 2017 Nano Lett. 17 261

    [156]

    Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, L W, Zhao W 2016 IEEE Electron Device Lett. 37 924

    [157]

    Kita K, Abraham D W, Gajek M J, Worledge D C 2012 J. Appl. Phys. 112 033919

    [158]

    Schellekens A J, van den Brink A, Franken J H, Swagten H J M, Koopmans B 2012 Nat. Commun. 3 847

    [159]

    Shiota Y, Murakami S, Bonell F, Nozaki T, Shinjo T, Suzuki Y 2011 Appl. Phys. Express 4 043005

    [160]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [161]

    White J S, Levatić I, Omrani A A, Egetenmeyer N, Pra K, Živković I, Gavilano J L, Kohlbrecher J, Bartkowiak M, Berger H, Rnnow H M 2012 J. Phys. Condens. Matter 24 432201

    [162]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [163]

    Jiang W, Zhang W, Yu G, Jungfleisch M B, Upadhyaya P, Somaily H, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2016 AIP Adv. 6 055602

    [164]

    Perez N, Martinez E, Torres L, Woo S H, Emori S, Beach G S D 2014 Appl. Phys. Lett. 104 189

    [165]

    Zhang X, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293

    [166]

    Purnama I, Gan W L, Wong D W, Lew W S 2015 Sci. Rep. 5 10620

    [167]

    Luo S, Zhang Y, Shen M, Ou-Yang J, Yan B, Yang X, Chen S, Zhu B, You L 2017 Appl. Phys. Lett. 110 112402

    [168]

    Zhu D, Kang W, Li S, Huang Y, Zhang X, Zhou Y, Zhao W 2018 IEEE Trans. Electron Devices 65 87

  • [1]

    Moore G E 1965 Electronics 38 114

    [2]

    Waldrop M M 2016 Nature 530 144

    [3]

    Baibich M N, Broto J M, Fert A, van Dau F N, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472

    [4]

    Fert A 2008 Rev. Mod. Phys. 80 1517

    [5]

    Julliere M 1975 Phys. Lett. A 54 225

    [6]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862

    [7]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868

    [8]

    Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508

    [9]

    Albert F J, Katine J A, Buhrman R A, Ralph D C 2000 Appl. Phys. Lett. 77 3809

    [10]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149

    [11]

    Borge J, Gorini C, Vignale G, Raimondi R 2015 Acta Phys. Pol. A 127 457

    [12]

    Jamali M, Narayanapillai K, Qiu X, Loong L M, Manchon A, Yang H 2013 Phys. Rev. Lett. 111 246602

    [13]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213

    [14]

    You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 Proc. Natl. Acad. Sci.USA 112 10310

    [15]

    Zhao W, Wang Z, Peng S, Wang L, Chang L, Zhang Y 2016 Sci. Sin. Phys. Mech. Astron. 46 107306

    [16]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [17]

    Wright D C, Mermin N D 1989 Rev. Mod. Phys. 61 385

    [18]

    Ho T L 1998 Phys. Rev. Lett. 81 742

    [19]

    Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Phys. Rev. B 47 16419

    [20]

    Belavin A A, Polyakov A M 1975 JETP Lett. 22 503

    [21]

    Abanov A, Pokrovsky V L 1998 Phys. Rev. B 58 R8889

    [22]

    Yang K, Moon K, Zheng L, MacDonald A H, Girvin S M, Yoshioka D, Zhang S C 1994 Phys. Rev. Lett. 72 732

    [23]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [24]

    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [25]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [26]

    Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202

    [27]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [28]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [29]

    Du H, Degrave J P, Xue F, Liang D, Ning W, Yang J, Tian M, Zhang Y, Jin S 2014 Nano Lett. 14 2026

    [30]

    Zhao X, Jin C, Wang C, Du H, Zang J, Tian M, Che R, Zhang Y 2016 Proc. Natl. Acad. Sci. USA 113 4918

    [31]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152

    [32]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839

    [33]

    Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444

    [34]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [35]

    Chen G, Mascaraque A, N'Diaye A T, Schmid A K 2015 Appl. Phys. Lett. 106 242404

    [36]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [37]

    Zhang X, Ezawa M, Zhou Y 2016 Phys. Rev. B 94 064406

    [38]

    Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q L, Wu H, Li W, Jiang W, Han X, Li X, Bleszynski Jayich A C, Amiri P K, Wang K L 2018 Nano Lett. 18 980

    [39]

    Tokunaga Y, Yu X Z, White J S, Rnnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638

    [40]

    Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rnnow H M, Tokura Y, Taguchi Y 2016 Nat. Mater. 15 1237

    [41]

    Li W, Jin C, Che R, Wei W, Lin L, Zhang L, Du H, Tian M, Zang J 2016 Phys. Rev. B 93 060409

    [42]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [43]

    Zhang X, Ezawa M, Zhou Y 2015 Sci. Rep. 5 9400

    [44]

    Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N, You L 2018 Nano Lett. 18 1180

    [45]

    Huang Y, Kang W, Zhang X, Zhou Y, Zhao W 2016 Nanotechnology 28 08LT02

    [46]

    Li S, Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2017 Nanotechnology 28 31LT01

    [47]

    Chen X, Kang W, Zhu D, Zhang X, Lei N, Zhang Y, Zhou Y, Zhao W 2018 Nanoscale 10 6139

    [48]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [49]

    Wiesendanger R 2016 Nat. Rev. Mater. 1 16044

    [50]

    Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2016 Proc. IEEE 104 2040

    [51]

    Lin Y S, Grundy P J, Giess E A 1973 Appl. Phys. Lett. 23 485

    [52]

    Garel T, Doniach S 1982 Phys. Rev. B 26 325

    [53]

    Takao S 1983 J. Magn. Magn. Mater. 3134 1009

    [54]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [55]

    Moriya T 1960 Phys. Rev. 120 91

    [56]

    Okubo T, Chung S, Kawamura H 2012 Phys. Rev. Lett. 108 017206

    [57]

    Fert A R 1990 Mater. Sci. Forum 5960 439

    [58]

    Fert A, Levy P M 1980 Phys. Rev. Lett. 44 1538

    [59]

    Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Nat. Nanotechnol. 8 723

    [60]

    Braun H B 2012 Adv. Phys. 6 1

    [61]

    Kim B S, Shapere A D 2016 Phys. Rev. Lett. 117 116805

    [62]

    Yi S D, Onoda S, Nagaosa N, Han J H 2009 Phys. Rev. B 80 054416

    [63]

    Shiomi Y, Kanazawa N, Shibata K, Onose Y, Tokura Y 2013 Phys. Rev. B 88 064409

    [64]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotechnol. 8 742

    [65]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411

    [66]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [67]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X X 2016 Adv. Mater. 28 6887

    [68]

    Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovcs A, Zang J, Tian M, Zhang Y, Du H, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205

    [69]

    Koshibae W, Nagaosa N 2016 Nat. Commun. 7 10542

    [70]

    Shen M, Zhang Y, Ou-Yang J, Yang X, You L 2018 Appl. Phys. Lett. 112 062403

    [71]

    Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M 2016 Phys. Rev. B 94 094420

    [72]

    Komineas S, Papanicolaou N 2015 Phys. Rev. B 92 174405

    [73]

    Brown W F 1978 J. Appl. Phys. 49 1937

    [74]

    Gilbert T L 1955 Phys. Rev. 100 1243

    [75]

    Landau L, Lifshits E 1935 Phys. Zeitsch. der Sow. 8 153

    [76]

    Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 990

    [77]

    Khvalkovskiy A V, Cros V, Apalkov D, Nikitin V, Krounbi M, Zvezdin K A, Anane A, Grollier J, Fert A 2013 Phys. Rev. B 87 020402

    [78]

    Mehlin A, Xue F, Liang D, Du H F, Stolt M J, Jin S, Tian M L, Poggio M 2015 Nano Lett. 15 4839

    [79]

    Yu X, Degrave J P, Hara Y, Hara T, Jin S, Tokura Y 2013 Nano Lett. 13 3755

    [80]

    Wang C, Du H, Zhao X, Jin C, Tian M, Zhang Y, Che R 2017 Nano Lett. 17 2921

    [81]

    Jin C M, Du H F 2015 Chin. Phys. B 24 128501

    [82]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [83]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Menteș T O, Sala A, Buda-Prejbeanu L D, Klein O et al. 2016 Nat. Nanotechnol. 11 449

    [84]

    Milde P, Kohler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Muhlbauer S, Pfleiderer C, Buhrandt S, Schutte C, Rosch A 2013 Science 340 1076

    [85]

    Legrand W, Maccariello D, Reyren N, Garcia K, Moutafis C, Moreau-Luchaire C, Collin S, Bouzehouane K, Cros V, Fert A 2017 Nano Lett. 17 2703

    [86]

    Du H, Ning W, Tian M, Zhang Y 2013 Phys. Rev. B 87 014401

    [87]

    Zhang L, Menzel D, Jin C, Du H, Ge M, Zhang C, Pi L, Tian M, Zhang Y 2015 Phys. Rev. B 91 024403

    [88]

    Zhang L, Han H, Ge M, Du H, Jin C, Wei W, Fan J, Zhang C, Pi L, Zhang Y 2016 Sci. Rep. 6 22397

    [89]

    Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201

    [90]

    Du H, Liang D, Jin C, Kong L, Stolt M J, Ning W, Yang J, Xing Y, Wang J, Che R, Zang J, Jin S, Zhang Y, Tian M 2015 Nat. Commun. 6 7637

    [91]

    Li Z A, Zheng F, Tavabi A H, Caron J, Jin C, Du H, Kovcs A, Tian M, Farle M, Dunin-Borkowski R E 2017 Nano Lett. 17 1395

    [92]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [93]

    Jin C, Li Z A, Kovcs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blgel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski R E 2017 Nat. Commun. 8 15569

    [94]

    Koshibae W, Nagaosa N 2014 Nat. Commun. 5 5148

    [95]

    Finazzi M, Savoini M, Khorsand A R, Tsukamoto A, Itoh A, Du L, Kirilyuk A, Rasing T, Ezawa M 2013 Phys. Rev. Lett. 110 177205

    [96]

    Liu Y, Yin G, Zang J, Shi J, Lake R K 2015 Appl. Phys. Lett. 107 152411

    [97]

    Du H, Ning W, Tian M, Zhang Y 2013 Europhys. Lett. 101 37001

    [98]

    Liu Y, Du H, Jia M, Du A 2015 Phys. Rev. B 91 094425

    [99]

    Liu Y, Yan H, Jia M, Du H, Du A 2016 Appl. Phys. Lett. 109 102402

    [100]

    Kang W, Huang Y, Zheng C, L W, Lei N, Zhang Y, Zhang X, Zhou Y, Zhao W 2016 Sci. Rep. 6 23164

    [101]

    Xia J, Huang Y, Zhang X, Kang W, Zheng C, Liu X, Zhao W, Zhou Y 2017 J. Appl. Phys. 122 153901

    [102]

    Zhang X, Zhou Y, Ezawa M 2016 Phys. Rev. B 93 024415

    [103]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [104]

    Hsu P J, Kubetzka A, Finco A, Romming N, von Bergmann K, Wiesendanger R 2016 Nat. Nanotechnol. 12 123

    [105]

    Zhou Y, Ezawa M 2014 Nat. Commun. 5 4652

    [106]

    Heinonen O, Jiang W, Somaily H, te Velthuis S G E, Hoffmann A 2016 Phys. Rev. B 93 094407

    [107]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981

    [108]

    Volovik G E 1987 J. Phys. C: Solid State Phys. 20 L83

    [109]

    Yang S A, Beach G S D, Knutson C, Xiao D, Niu Q, Tsoi M, Erskine J L 2009 Phys. Rev. Lett. 102 067201

    [110]

    Hai P N, Ohya S, Tanaka M, Barnes S E, Maekawa S 2009 Nature 458 489

    [111]

    Barnes S E, Maekawa S 2007 Phys. Rev. Lett. 98 246601

    [112]

    Everschor-Sitte K, Sitte M 2014 J. Appl. Phys. 115 172602

    [113]

    Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Nat. Phys. 8 301

    [114]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463

    [115]

    Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202

    [116]

    Zang J, Mostovoy M, Han J H, Nagaosa N 2011 Phys. Rev. Lett. 107 136804

    [117]

    Lin S Z, Reichhardt C, Batista C D, Saxena A 2013 Phys. Rev. B 87 214419

    [118]

    Thiele A A 1973 Phys. Rev. Lett. 30 230

    [119]

    Thiele A A 1974 J. Appl. Phys. 45 377

    [120]

    Thiele A A 1969 Bell Syst. Tech. J. 48 3287

    [121]

    Stone M 1996 Phys. Rev. B: Condens. Matter Mater. Phys. 53 16573

    [122]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [123]

    Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [124]

    Zhang X, Xia J, Zhao G P, Liu X, Zhou Y 2016 IEEE Trans. Magn. 53 1500206

    [125]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2015 Sci. Rep. 4 6784

    [126]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2017 Nat. Phys. 13 162

    [127]

    Litzius K, Lemesh I, Krger B, Bassirian P, Caretta L, Richter K, Bttner F, Sato K, Tretiakov O A, Frster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schtz G, Beach G S D, Klui M 2017 Nat. Phys. 13 170

    [128]

    Chen X, Kang W, Zhu D, Zhang X, Lei N, Zhang Y, Zhou Y, Zhao W 2017 Appl. Phys. Lett. 111 202406

    [129]

    Upadhyaya P, Yu G, Amiri P K, Wang K L 2015 Phys. Rev. B 92 134411

    [130]

    Zhang Y, Luo S, Yan B, Ou-Yang J, Yang X, Chen S, Zhu B, You L 2017 Nanoscale 9 10212

    [131]

    Kong L, Zang J 2013 Phys. Rev. Lett. 111 67203

    [132]

    Mochizuki M, Yu X Z, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y, Nagaosa N 2014 Nat. Mater. 13 241

    [133]

    Wang C, Xiao D, Chen X, Zhou Y, Liu Y 2017 New J. Phys. 19 083008

    [134]

    Zhang X, Ezawa M, Xiao D, Zhao G P, Liu Y, Zhou Y 2015 Nanotechnology 26 225701

    [135]

    Ding J, Yang X, Zhu T 2015 IEEE Trans. Magn. 51 1500504

    [136]

    Zhang X, Mller J, Xia J, Garst M, Liu X, Zhou Y 2017 New J. Phys. 19 065001

    [137]

    Li Z, Zhang Y, Huang Y, Wang C, Zhang X, Liu Y, Zhou Y, Kang W, Koli S C, Lei N 2018 J. Magn. Magn. Mater. 455 19

    [138]

    Wang X, Gan W L, Martinez J C, Tan F N, Jalil M B A, Lew W S 2018 Nanoscale 10 733

    [139]

    Liu Y, Lei N, Wang C, Zhang X, Kang W, Zhu D, Zhou Y, Liu X, Zhang Y, Zhao W 2018 Arxiv Prepr. 1803.05615

    [140]

    Yin G, Liu Y, Barlas Y, Zang J, Lake R K 2015 Phys. Rev. B 92 024411

    [141]

    Liang D, DeGrave J P, Stolt M J, Tokura Y, Jin S 2015 Nat. Commun. 6 8217

    [142]

    Crum D M, Bouhassoune M, Bouaziz J, Schweflinghaus B, Blgel S, Lounis S 2015 Nat. Commun. 6 8541

    [143]

    Hamamoto K, Ezawa M, Nagaosa N 2016 Appl. Phys. Lett. 108 112401

    [144]

    Koshibae W, Kaneko Y, Iwasaki J, Kawasaki M, Tokura Y, Nagaosa N 2015 Jpn. J. Appl. Phys. 54 053001

    [145]

    Hanneken C, Otte F, Kubetzka A, Dup B, Romming N, von Bergmann K, Wiesendanger R, Heinze S 2015 Nat. Nanotechnol. 10 1039

    [146]

    Li C H, van't Erve O M J, Robinson J T, Liu Y, Li L, Jonker B T 2014 Nat. Nanotechnol. 9 218

    [147]

    Bode M, Heinze S, Kubetzka A, Pietzsch O, Nie X, Bihlmayer G, Blgel S, Wiesendanger R 2002 Phys. Rev. Lett. 89 237205

    [148]

    Zhang S S L, Vignale G, Zhang S 2015 Phys. Rev. B 92 024412

    [149]

    Gould C, Rster C, Jungwirth T, Girgis E, Schott G M, Giraud R, Brunner K, Schmidt G, Molenkamp L W 2004 Phys. Rev. Lett. 93 117203

    [150]

    Liu G B, Li D, de Chatel P F, Wang J, Liu W, Zhang Z D 2016 Chin. Phys. B 25 067203

    [151]

    Zhang X, Zhou Y, Ezawa M, Zhao G P, Zhao W 2015 Sci. Rep. 5 11369

    [152]

    Zhang X, Cai W, Zhang X, Wang Z, Li Z, Zhang Y, Cao K, Lei N, Kang W, Zhang Y, Yu H, Zhou Y, Zhao W 2018 Arxiv Prepr. 1803.05138

    [153]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [154]

    Kang W, Zheng C, Huang Y, Zhang X, L W, Zhou Y, Zhao W 2017 IEEE Trans. Electron Devices 64 1060

    [155]

    Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K, Wang K L 2017 Nano Lett. 17 261

    [156]

    Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, L W, Zhao W 2016 IEEE Electron Device Lett. 37 924

    [157]

    Kita K, Abraham D W, Gajek M J, Worledge D C 2012 J. Appl. Phys. 112 033919

    [158]

    Schellekens A J, van den Brink A, Franken J H, Swagten H J M, Koopmans B 2012 Nat. Commun. 3 847

    [159]

    Shiota Y, Murakami S, Bonell F, Nozaki T, Shinjo T, Suzuki Y 2011 Appl. Phys. Express 4 043005

    [160]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [161]

    White J S, Levatić I, Omrani A A, Egetenmeyer N, Pra K, Živković I, Gavilano J L, Kohlbrecher J, Bartkowiak M, Berger H, Rnnow H M 2012 J. Phys. Condens. Matter 24 432201

    [162]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [163]

    Jiang W, Zhang W, Yu G, Jungfleisch M B, Upadhyaya P, Somaily H, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2016 AIP Adv. 6 055602

    [164]

    Perez N, Martinez E, Torres L, Woo S H, Emori S, Beach G S D 2014 Appl. Phys. Lett. 104 189

    [165]

    Zhang X, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293

    [166]

    Purnama I, Gan W L, Wong D W, Lew W S 2015 Sci. Rep. 5 10620

    [167]

    Luo S, Zhang Y, Shen M, Ou-Yang J, Yan B, Yang X, Chen S, Zhu B, You L 2017 Appl. Phys. Lett. 110 112402

    [168]

    Zhu D, Kang W, Li S, Huang Y, Zhang X, Zhou Y, Zhao W 2018 IEEE Trans. Electron Devices 65 87

  • [1] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 物理学报, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [3] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [4] 牛鹏斌, 罗洪刚. 马约拉纳费米子与杂质自旋相互作用的热偏压输运. 物理学报, 2021, 70(11): 117401. doi: 10.7498/aps.70.20202241
    [5] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明. 旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展. 物理学报, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [6] 李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰. -(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算. 物理学报, 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [7] 黄灿, 李小影, 朱岩, 潘燕飞, 樊济宇, 施大宁, 马春兰. 第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用. 物理学报, 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [8] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动. 物理学报, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [9] 张蕾. 斯格明子相关的螺旋磁有序体系的临界行为. 物理学报, 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [10] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [11] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究. 物理学报, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [12] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇. 铁磁/非磁金属异质结中的拓扑霍尔效应. 物理学报, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [13] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [14] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储. 物理学报, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [15] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量. 物理学报, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [16] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应. 物理学报, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [17] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [18] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论. 物理学报, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株. 量子阱中电子自旋注入及弛豫的飞秒光谱研究. 物理学报, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  12323
  • PDF下载量:  967
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-28
  • 修回日期:  2018-05-17
  • 刊出日期:  2018-07-05

/

返回文章
返回