搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯封装单层二硫化钼的热稳定性研究

刘乐 汤建 王琴琴 时东霞 张广宇

引用本文:
Citation:

石墨烯封装单层二硫化钼的热稳定性研究

刘乐, 汤建, 王琴琴, 时东霞, 张广宇

Thermal stability of MoS2 encapsulated by graphene

Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu
PDF
导出引用
  • 将单层二硫化钼用石墨烯进行封装,构造了石墨烯和二硫化钼的范德瓦耳斯异质结构,并且分别在氩气(Ar)和氢气(H2)氛围下,详细研究了被封装的二硫化钼的热稳定性.结果表明:在氩气氛围中,石墨烯封装的二硫化钼在400–1000℃下一直保持稳定,而石墨烯和氧化硅上裸露的二硫化钼在1000℃时几乎全部分解;在氢气氛围中,石墨烯封装的二硫化钼在400–1000℃下一直稳定存在,而石墨烯和氧化硅上裸露的二硫化钼在800℃下已经完全分解.综上可得,在氩气和氢气的氛围下,被石墨烯封装的二硫化钼的热稳定性得到了显著的提高.该研究通过用石墨烯将单层的二硫化钼进行封装以提高其热稳定性,在未来以单层二硫化钼作为基础材料的电子器件中,可以保证其在高温下能够正常工作.该研究也为提高其他二维材料的热稳定性提供了一种可行的方法和思路.
    Monolayer molybdenum disulfide (MoS2), a semiconductor material with direct band gap, is considered to be an important fundamental material for the future development of the semiconductor industry. In order to apply the material to semiconductor devices, we have to investigate the electrical, optical and thermal properties of MoS2. People have always been concerning about the electrical and optical properties, but pay little attention to the thermal properties of MoS2, especially thermal stability. It is well known that semiconductor device generates a lot of heat when it works, sometimes even running in high temperature environment. The above conditions all require the material which has good thermal stability. So we focus on how to improve the thermal stability of MoS2. In this paper, we report the construction of the van der Waals heterostructures of graphene and MoS2 by encapsulating monolayer MoS2 with graphene, and dissect the thermal stability of encapsulated MoS2 in argon (Ar) and hydrogen (H2) atmosphere respectively. The results show that in Ar atmosphere, MoS2 encapsulated by graphene keeps stable when the temperature increases to 1000 ℃, while the exposed MoS2 is decomposed almost completely at 1000 ℃. In H2 atmosphere, MoS2 encapsulated by graphene keeps stable when the temperature increases to 1000 ℃, but the exposed MoS2 is decomposed completely at 800 ℃. In conclusion, the thermal stability of MoS2 encapsulated by graphene can be improved significantly. We analyze the reason why MoS2 encapsulated by graphene gains good thermal stability. Firstly, the covered graphene provides additional van der Waals forces, which increases the decomposition energy of MoS2, making it more stable at high temperature environment. Secondly, graphene separates MoS2 from the external environment, preventing MoS2 from contacting and reacting with external gas, which greatly improves the thermal stability of MoS2 at high temperature environment. Meanwhile, graphene covers the active defect site on MoS2, making it difficult to react at defects. In summary, the monolayer MoS2 devices can work normally at high temperature when MoS2 is encapsulated by graphene. In addition, our work also provides a feasible approach to improving the thermal stability of other two-dimensional materials.
      通信作者: 时东霞, dxshi@iphy.ac.cn;gyzhang@iphy.ac.cn ; 张广宇, dxshi@iphy.ac.cn;gyzhang@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51572289,61734001)和中国科学院(批准号:QYZDB-SSW-SLH004,XDPB06)资助的课题.
      Corresponding author: Shi Dong-Xia, dxshi@iphy.ac.cn;gyzhang@iphy.ac.cn ; Zhang Guang-Yu, dxshi@iphy.ac.cn;gyzhang@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572289, 61734001) and Chinese Academy of Sciences (Grant Nos. QYZDB-SSW-SLH004, XDPB06).
    [1]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [3]

    Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091

    [4]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494

    [5]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [6]

    Tian H, Chin M L, Najmaei S, Guo Q, Xia F, Wang H, Dubey M 2016 Nano Res. 9 1543

    [7]

    Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, Zhang G Y 2017 Adv. Mater. 29 1702522

    [8]

    Ding Z, Pei Q X, Jiang J W, Huang W, Zhang Y W 2016 Carbon 96 888

    [9]

    Srinivasan S, Balasubramanian G 2018 Langmuir 34 3326

    [10]

    Galashev A E E, Rakhmanova O R 2014 Phys. -Usp. 57 970

    [11]

    Nan H Y, Ni Z H, Wang J, Zafar Z, Shi Z X, Wang Y Y 2013 J. Raman Spectrosc. 44 1018

    [12]

    Campos-Delgado J, Kim Y A, Hayashi T, Morelos-Gómez A, Hofmann M, Muramatsu H, Endo M, Terrones H, Shull R D, Dresselhaus M S, Terrones M 2009 Chem. Phys. Lett. 469 177

    [13]

    Wang X W, Fan W, Fan Z W, Dai W Y, Zhu K L, Hong S Z, Sun Y F, Wu J Q, Liu K 2018 Nanoscale 10 3540

    [14]

    Niakan H, Zhang C, Hu Y, Szpunar J A, Yang Q 2014 Thin Solid Films 562 244

    [15]

    Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S 2012 Nano lett. 12 1538

    [16]

    Lin Y C, Zhang W J, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J 2012 Nanoscale 4 6637

    [17]

    Chen W, Zhao J, Zhang J, Gu L, Yang Z Z, Li X M, Yu H, Zhu X T, Yang R, Shi D X, Lin X C, Guo J D, Bai X D, Zhang G Y 2015 J. Am. Chem. Soc. 137 15632

    [18]

    Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001

    [19]

    Sevik C 2014 Phys. Rev. B 89 035422

    [20]

    Anees P, Valsakumar M C, Panigrahi B K 2017 Phys. Chem. Chem. Phys. 19 10518

    [21]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

  • [1]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [3]

    Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091

    [4]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494

    [5]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [6]

    Tian H, Chin M L, Najmaei S, Guo Q, Xia F, Wang H, Dubey M 2016 Nano Res. 9 1543

    [7]

    Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, Zhang G Y 2017 Adv. Mater. 29 1702522

    [8]

    Ding Z, Pei Q X, Jiang J W, Huang W, Zhang Y W 2016 Carbon 96 888

    [9]

    Srinivasan S, Balasubramanian G 2018 Langmuir 34 3326

    [10]

    Galashev A E E, Rakhmanova O R 2014 Phys. -Usp. 57 970

    [11]

    Nan H Y, Ni Z H, Wang J, Zafar Z, Shi Z X, Wang Y Y 2013 J. Raman Spectrosc. 44 1018

    [12]

    Campos-Delgado J, Kim Y A, Hayashi T, Morelos-Gómez A, Hofmann M, Muramatsu H, Endo M, Terrones H, Shull R D, Dresselhaus M S, Terrones M 2009 Chem. Phys. Lett. 469 177

    [13]

    Wang X W, Fan W, Fan Z W, Dai W Y, Zhu K L, Hong S Z, Sun Y F, Wu J Q, Liu K 2018 Nanoscale 10 3540

    [14]

    Niakan H, Zhang C, Hu Y, Szpunar J A, Yang Q 2014 Thin Solid Films 562 244

    [15]

    Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S 2012 Nano lett. 12 1538

    [16]

    Lin Y C, Zhang W J, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J 2012 Nanoscale 4 6637

    [17]

    Chen W, Zhao J, Zhang J, Gu L, Yang Z Z, Li X M, Yu H, Zhu X T, Yang R, Shi D X, Lin X C, Guo J D, Bai X D, Zhang G Y 2015 J. Am. Chem. Soc. 137 15632

    [18]

    Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001

    [19]

    Sevik C 2014 Phys. Rev. B 89 035422

    [20]

    Anees P, Valsakumar M C, Panigrahi B K 2017 Phys. Chem. Chem. Phys. 19 10518

    [21]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

  • [1] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [4] 刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军. 外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究. 物理学报, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [5] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望. 物理学报, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [6] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响. 物理学报, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [7] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [8] 王晓波, 李克伟, 高丽娟, 程旭东, 蒋蓉. 耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性. 物理学报, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [9] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [10] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究. 物理学报, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [11] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [12] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [13] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [14] 厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌. 双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模. 物理学报, 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
    [15] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [16] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系. 物理学报, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [17] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [18] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究. 物理学报, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [19] 张旭东, 徐铁峰, 聂秋华, 戴世勋, 沈 祥, 陆龙君, 章向华. Er3+/Yb3+共掺碲硼硅酸盐玻璃的光谱性质和热稳定性研究. 物理学报, 2007, 56(3): 1758-1764. doi: 10.7498/aps.56.1758
    [20] 沈 祥, 聂秋华, 徐铁峰, 高 媛. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究. 物理学报, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
计量
  • 文章访问数:  6525
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-28
  • 修回日期:  2018-09-27
  • 刊出日期:  2019-11-20

/

返回文章
返回