搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2 μm波段硫系玻璃微球激光器的制备和表征

胡博 吴越豪 郑雨璐 戴世勋

引用本文:
Citation:

2 μm波段硫系玻璃微球激光器的制备和表征

胡博, 吴越豪, 郑雨璐, 戴世勋

Fabrication and characterization of chalcogenide glass microsphere lasers operating at 2 μm

Hu Bo, Wu Yue-Hao, Zheng Yu-Lu, Dai Shi-Xun
PDF
HTML
导出引用
  • 工作在$2\;{\text{μ}}{\rm{m}}$波段附近的中红外微球激光器在生物医学传感、激光雷达、窄带光学滤波和空气污染监控等领域具有重要的应用价值. 本文以自制的Tm3+-Ho3+共掺的Ge-Ga-Sb-S (2S2G)硫系玻璃为基质材料, 采用玻璃粉末高温漂浮熔融法批量制备了高品质(典型品质因数大于105)硫系玻璃微球. 优选一颗直径为$205.82\;{\text{μ}}{\rm{m}}$的微球为实验对象, 利用光纤锥耦合法对其进行光学近场耦合实验. 在808 nm抽运光的作用下, 在1.8—$2.1\;{\text{μ}}{\rm{m}}$波段处可观测到明显的荧光回廊模现象. 当抽运功率达到0.848 mW的阈值时, 可在2080 nm附近观测到明显的激光输出. 上述实验结果表明本文采用的2S2G硫系玻璃具有用于制备工作在中远红外波段的有源光学/光电子学器件的潜力.
    Microsphere lasers operating at the $2\;{\text{μ}}{\rm{m}}$ band have important applications in the fields of bio-medical sensing, laser radars, narrow linewidth optical filtering, and air-pollution monitoring. In this work, we utilize a novel type of chalcogenide glass, whose composition is Ge-Ga-Sb-S or 2S2G, to fabricate microsphere lasers. Compared with chalcogenide glasses used in previous microsphere lasers, this 2S2G glass is environmentally friendly. It also has a lower melting temperature and a higher characterization temperature, implying that 2S2G microspheres can be fabricated at lower temperatures and the crystallization problem happening in the sphere-forming process can be mitigated. A $\text{Tm}^{3+}\text{-}\text{Ho}^{3+} $ co-doping scheme is applied to the 2S2G glass, so that fluorescence light at ~$2\;{\text{μ}}{\rm{m}}$ can be obtained from the bulk glass. Owing to the superior properties of the 2S2G glass, we can utilize a droplet method to mass-produce hundreds of high-quality 2S2S microspheres in one experimental run. The diameters of microspheres fabricated in this work fall in a range of 50−$250\;{\text{μ}}{\rm{m}}$ and typical quality factors (Q factor) of microspheres are higher than 105. As a representative example, we characterize the optical properties of a $205.82\;{\text{μ}}{\rm{m}}$ diameter 2S2G microsphere. This microsphere is placed in contact with a silica fiber taper, so that the pump light can be evanescently introduced into the microsphere and the fluorescence light can be evanescently collected from the microsphere. A commercial laser diode (808 nm) is used as a pump source and an optical spectral analyzer is used to measure the transmission spectra of the microsphere/fiber taper coupling system. Apparent whispering gallery mode patterns in the ~$2\;{\text{μ}}{\rm{m}}$ band can be noted in the transmission spectra of the coupling system. When the pump power increases beyond a threshold of 0.848 mW, a lasing peak at 2080.54 nm can be obtained from the coupling system. Experimental results presented in this work show that this 2S2G chalcogenide glass is a promising base material for fabricating various active optical/photonic devices in the middle-wavelength and long-wavelength infrared spectra.
      通信作者: 吴越豪, wuyuehao@nbu.edu.cn
    • 基金项目: 国家自然科学青年科学基金(批准号: 61605094)、国家自然科学基金重点项目(批准号: 61435009)和宁波大学王宽诚幸福基金资助的课题.
      Corresponding author: Wu Yue-Hao, wuyuehao@nbu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61605094), the Key Program of the National Natural Science Foundation of China (Grant No. 61435009), and the K. C. Wong Magna Fund in Ningbo University, China.
    [1]

    Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 083904Google Scholar

    [2]

    Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74Google Scholar

    [3]

    Sandoghdar V, Treussart F, Hare J, Lefevre-Seguin V, Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777Google Scholar

    [4]

    Murugan G S, Zervas M N, Panitchob Y, Wilkinson J S 2011 Opt. Lett. 36 73Google Scholar

    [5]

    黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡 2017 物理学报 66 244208Google Scholar

    Huang Y T, Peng L X, Zhuang S J, Li Q L, Liao Y D, Xu C H, Duan Y F 2017 Acta Phys. Sin. 66 244208Google Scholar

    [6]

    Collot L, Lefevre-sequin V, Brune M, Raimond J M, Haroche S 1993 Europhys. Lett. 23 327Google Scholar

    [7]

    吴天娇, 黄衍堂, 马靖, 黄婧, 黄玉, 张培进, 郭长磊 2014 物理学报 63 217805Google Scholar

    Wu T J, Huang Y T, Ma J, Huang J, Huang Y, Zhang P J, Guo C L 2014 Acta Phys. Sin. 63 217805Google Scholar

    [8]

    Ilchenko V S, Yao X S, Maleki L 2000 Proceedings of the Conference on Lasers and Electro-Optics (CLEO 2000) San Francisco, USA, May 7−12, 2000 CFH4

    [9]

    Peng X, Song F, Jiang S, Peyghambarian N, Kuwata-gonokami M, Xu L 2003 Appl. Phys. Lett. 83 5380Google Scholar

    [10]

    Elliott G R, Murugan G S, Wilkinson J S, Zervas M N, Hewak D W 2010 Opt. Expr. 18 26720Google Scholar

    [11]

    Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photon. 5 141Google Scholar

    [12]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1Google Scholar

    [13]

    Seddon A B 1995 J. Non-Cryst. Solids 184 44Google Scholar

    [14]

    Vanier F, Rochette M, Godbout M, Peter Y A 2013 Opt. Lett. 38 4966Google Scholar

    [15]

    Li C, Dai S, Zhang Q, Shen X, Wang X, Zhang P, Lu L, Wu Y, Lv S 2015 Chin. Phys. B 24 044208Google Scholar

    [16]

    张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远 2016 物理学报 65 144205Google Scholar

    Zhang X D, Wu Y H, Yang Z S, Dai S X, Zhang P Q, Zhang W, Xu T F, Zhang Q Y 2016 Acta Phys. Sin. 65 144205Google Scholar

    [17]

    Liu J, Shi H, Liu K, Hou Y, Wang P 2014 Opt. Expr. 22 13572Google Scholar

    [18]

    Moulton P F, Rines G A, Slobodtchikov V, Wall K F, Frith G, Samson B, Adrian L G 2009 IEEE J. Sel. Top. Quant. 15 85Google Scholar

    [19]

    Tao M, Feng G, Yu T, Wang Z, Shen Y, Ye X 2016 J. Russ. Laser Res. 37 395Google Scholar

    [20]

    Wang P, Lee T, Ding M, Dhar A, Hawkins T, Foy P, Semenova Y, Wu Q, Sahu J, Farrell G, Ballato J, Brambilla G 2012 Opt. Lett. 37 728eGoogle Scholar

    [21]

    Yang Z, Wu Y, Yang K, Xu P, Zhang W, Dai S, Xu T 2017 Opt. Mat. 72 524Google Scholar

  • 图 1  Tm3+离子单掺(黑色曲线)和Tm3+-Ho3+离子共掺(红色曲线) 2G2S玻璃荧光光谱对比图

    Fig. 1.  Fluorescence spectra of 2S2G glass samples that are doped with Tm3+ ions (black curve) and co-doped with Ho3+-Tm3+ ions (red curve)

    图 2  实验制备的一批典型的2G2S硫系玻璃微球

    Fig. 2.  A typical batch of 2S2G microspheres fabricated in this work

    图 3  位于1552.34 nm附近的一处典型吸收峰, 其中圆点代表实验数据实线则是高斯拟合曲线; 内插图是实验所选用的直径为$205.82\;{\text{μ}}{\rm{m}}$的2S2G玻璃微球

    Fig. 3.  A typical absorption valley at 1552.34 nm obtained with the microsphere/fiber taper coupling system. Dark spots and the red solid line represent experimental measurements and their Gaussian fit, respectively. The inset shows a microscopic image of the 2S2G microsphere used in this experiment, whose diameter is $205.82\;{\text{μ}}{\rm{m}}$

    图 4  直径为$205.82\;{\text{μ}}{\rm{m}}$的微球在1700—2150 nm波长范围内的光学回廊模, 其中黑色虚线表示块状玻璃的荧光光谱

    Fig. 4.  Whispering gallery modes within the wavelength span of 1700−2150 nm obtained from a $205.82\;{\text{μ}}{\rm{m}}$ diameter microsphere. The black dashed line represents the fluorescence spectrum of the bulk glass

    图 5  微球激光功率与抽运功率的关系(插图为抽运功率为0.782 mW和0.848 mW时耦合系统的荧光光谱)

    Fig. 5.  Relationship between the microsphere laser power and the pump power. Inset: fluorescence spectra obtained when the pump power are 0.782 mW (black curve) and 0.848 mW (red curve)

    图 6  2S2G微球激光器的多模输出光谱(包含两个激光峰)

    Fig. 6.  Multi-mode 2S2G microsphere laser with two laser peaks

  • [1]

    Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 083904Google Scholar

    [2]

    Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74Google Scholar

    [3]

    Sandoghdar V, Treussart F, Hare J, Lefevre-Seguin V, Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777Google Scholar

    [4]

    Murugan G S, Zervas M N, Panitchob Y, Wilkinson J S 2011 Opt. Lett. 36 73Google Scholar

    [5]

    黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡 2017 物理学报 66 244208Google Scholar

    Huang Y T, Peng L X, Zhuang S J, Li Q L, Liao Y D, Xu C H, Duan Y F 2017 Acta Phys. Sin. 66 244208Google Scholar

    [6]

    Collot L, Lefevre-sequin V, Brune M, Raimond J M, Haroche S 1993 Europhys. Lett. 23 327Google Scholar

    [7]

    吴天娇, 黄衍堂, 马靖, 黄婧, 黄玉, 张培进, 郭长磊 2014 物理学报 63 217805Google Scholar

    Wu T J, Huang Y T, Ma J, Huang J, Huang Y, Zhang P J, Guo C L 2014 Acta Phys. Sin. 63 217805Google Scholar

    [8]

    Ilchenko V S, Yao X S, Maleki L 2000 Proceedings of the Conference on Lasers and Electro-Optics (CLEO 2000) San Francisco, USA, May 7−12, 2000 CFH4

    [9]

    Peng X, Song F, Jiang S, Peyghambarian N, Kuwata-gonokami M, Xu L 2003 Appl. Phys. Lett. 83 5380Google Scholar

    [10]

    Elliott G R, Murugan G S, Wilkinson J S, Zervas M N, Hewak D W 2010 Opt. Expr. 18 26720Google Scholar

    [11]

    Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photon. 5 141Google Scholar

    [12]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1Google Scholar

    [13]

    Seddon A B 1995 J. Non-Cryst. Solids 184 44Google Scholar

    [14]

    Vanier F, Rochette M, Godbout M, Peter Y A 2013 Opt. Lett. 38 4966Google Scholar

    [15]

    Li C, Dai S, Zhang Q, Shen X, Wang X, Zhang P, Lu L, Wu Y, Lv S 2015 Chin. Phys. B 24 044208Google Scholar

    [16]

    张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远 2016 物理学报 65 144205Google Scholar

    Zhang X D, Wu Y H, Yang Z S, Dai S X, Zhang P Q, Zhang W, Xu T F, Zhang Q Y 2016 Acta Phys. Sin. 65 144205Google Scholar

    [17]

    Liu J, Shi H, Liu K, Hou Y, Wang P 2014 Opt. Expr. 22 13572Google Scholar

    [18]

    Moulton P F, Rines G A, Slobodtchikov V, Wall K F, Frith G, Samson B, Adrian L G 2009 IEEE J. Sel. Top. Quant. 15 85Google Scholar

    [19]

    Tao M, Feng G, Yu T, Wang Z, Shen Y, Ye X 2016 J. Russ. Laser Res. 37 395Google Scholar

    [20]

    Wang P, Lee T, Ding M, Dhar A, Hawkins T, Foy P, Semenova Y, Wu Q, Sahu J, Farrell G, Ballato J, Brambilla G 2012 Opt. Lett. 37 728eGoogle Scholar

    [21]

    Yang Z, Wu Y, Yang K, Xu P, Zhang W, Dai S, Xu T 2017 Opt. Mat. 72 524Google Scholar

  • [1] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 物理学报, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [2] 杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂. 基于光学反馈频率锁定的窄线宽稳定中红外激光产生技术研究. 物理学报, 2024, 73(1): 014205. doi: 10.7498/aps.73.20231049
    [3] 夏文新, 付士杰, 张钧翔, 张露, 盛泉, 罗学文, 史伟, 姚建铨. 基于级联跃迁的2.8 μm低掺铒氟化物光纤激光器数值分析与优化. 物理学报, 2023, 72(22): 224205. doi: 10.7498/aps.72.20230903
    [4] 张頔玉, 蓝文迪, 李雪峰, 张稣稣, 郭福明, 杨玉军. 驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响. 物理学报, 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [5] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [6] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [7] 杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇. Ge-Sb-Se硫系玻璃的折射率和热光系数. 物理学报, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [8] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析. 物理学报, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [9] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [10] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [11] 赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析. 物理学报, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [12] 林常规, 翟素敏, 李卓斌, 屈国顺, 顾少轩, 陶海征, 戴世勋. GeS2-In2S3硫系玻璃的物化性质与晶化行为研究. 物理学报, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [13] 杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规. 中红外色散平坦硫系光子晶体光纤设计及性能研究. 物理学报, 2014, 63(1): 014210. doi: 10.7498/aps.63.014210
    [14] 杨志清, 王飞利, 林常规. 20GeS2·80Sb2S3硫系玻璃的析晶行为及动力学机理研究. 物理学报, 2013, 62(18): 184211. doi: 10.7498/aps.62.184211
    [15] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [16] 林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋. GeS2-Ga2S3-CsI硫系玻璃的析晶行为及其组成依赖研究. 物理学报, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [17] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [18] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [19] 戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华. Dy3+掺杂Ge-Ga-S-CsI玻璃中红外发光特性研究. 物理学报, 2010, 59(5): 3547-3553. doi: 10.7498/aps.59.3547
    [20] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
计量
  • 文章访问数:  5622
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-08
  • 修回日期:  2019-01-19
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回