搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究

李山 姜楠 杨绍琼

引用本文:
Citation:

正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究

李山, 姜楠, 杨绍琼

Influence of sinusoidal riblets on the coherent structures in turbulent boundary layer studied by time-resolved particle image velocimetry

Li Shan, Jiang Nan, Yang Shao-Qiong
PDF
HTML
导出引用
  • 利用高时间分辨率粒子图像测速(time-resolved particle image velocimetry, TR-PIV)技术, 在不同雷诺数下对光滑壁面和二维顺流向、三维正弦波(two/three dimensional, 2D/3D)沟槽壁面湍流边界层流场进行了实验测量, 从不同沟槽对湍流边界层相干结构影响的角度分析了其减阻的机理. 对比不同壁面的各阶统计量结果发现: 沟槽降低了壁面摩擦阻力, 存在减阻效果, 正弦波沟槽的减阻率增大. 运用相关函数、$\lambda_{ci}$检测准则等方法提取了不同壁面湍流边界层发卡涡和低速条带等典型相干结构的空间拓扑形态, 结果表明: 两种沟槽壁面的相干结构在流向和法向上的空间尺度均有不同程度的减小, 且相干结构与主流之间的倾角趋于更小, 流体在法向上的运动及结构的抬升受到明显抑制, 发卡涡诱导喷射和扫掠的能力降低, 从而影响了湍流中能量与动量的输运过程及湍流的自维持机制, 且相比于2D沟槽, 3D正弦波沟槽作用效果更为明显. 在同一雷诺数下, 随着距离壁面法向位置的增加, 不同壁面湍流边界层低速条带的展向间距都变宽; 但同一法向位置处2D/3D沟槽壁面湍流边界层低速条带的间距与光滑壁面的相比更宽, 沟槽的存在有效抑制了低速条带在展向上的运动, 使得低速条带更稳定.
    Drag reduction by riblets has drawn the attention of many researchers because of its low production cost and easy maintenance. But due to the fact that the rather low drag reduction riblets can offered, an easy modification to the structure of riblets to improve the performance would be more than necessary. In this work, an investigation of the influences on coherent structure of straight riblets and sinusoidal riblets (s-riblets) in a turbulent boundary layer (TBL) at various Reynolds numbers is carried out experimentally by using the time-resolved particle image velocimetry (TR-PIV). It is found that the skin friction of the turbulent boundary layer is reduced close to the wall, and the logarithmic velocity profile shifts upwards over riblets and s-riblets. The turbulence intensity and Reynolds shear stress are also reduced in the near wall region compared with the scenario of the smooth case, and a better performance on drag reduction is obtained over s-riblets. Coherent structures including hairpin vortex and low speed streaks are extracted over test plates by using the correlation coefficient and $\lambda_{ci}$ vortex identification method, to study the mechanism of drag reduction caused by riblets. It is shown that the spatial scale of coherent structure in streamwise and wall-normal direction decrease over riblets and s-riblets to various degrees, the inclination angle between the mainstream and coherent structure also decreases, meaning that the wall-normal movement and upwash motion are suppressed over riblets and s-riblets. Results from the conditional sampling method demonstrate that the induction of ejection and sweep motions by hairpin vortex are inhibited over riblets and hence the exchange of energy and momentum and the self-sustaining mechanism in turbulence are influenced. Furthermore, at the same $Re_{\tau}$, the spanwise spacing of low speed streaks turns wider with wall-normal position increasing. At the same $ y^{+} $, a larger spacing is seen over riblets and s-riblets, implying that spanwise movement of the streaks is restrained and hence becomes more stable.
      通信作者: 姜楠, nanj@tju.edu.cn ; 杨绍琼, shaoqiongy@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11732010, 11572221, 11872272, U1633109, 11802195)、 国家重点研发计划(批准号: 2018YFC0705300)和天津市自然科学基金(批准号: 18JCQNJC05100)资助的课题.
      Corresponding author: Jiang Nan, nanj@tju.edu.cn ; Yang Shao-Qiong, shaoqiongy@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11732010, 11572221, 11872272, U1633109, 11802195), the National Key R&D Program of China (Grant No. 2018YFC0705300), and the Natural Science Foundation of Tianjin, China (Grant No. 18JCQNJC05100).
    [1]

    Christensen K T, Adrian R J 2001 J. Fluid Mech. 431 433Google Scholar

    [2]

    Adrian R J 2007 Phys. Fluids 19 41301Google Scholar

    [3]

    Eitel-Amor G, Örlü R, Schlatter P, Flores OAdrian R J 2015 Phys. Fluids 27 25108Google Scholar

    [4]

    Lu S S, Willmarth W W 1973 J. Fluid Mech. 60 481Google Scholar

    [5]

    Choi K 1989 J. Fluid Mech. 208 417Google Scholar

    [6]

    Orlandi P, Jiménez J 1994 Phys. Fluids 6 634Google Scholar

    [7]

    Bechert D W, Bruse M, Hage W, Meyer R 2000 Naturwissenschaften 87 157Google Scholar

    [8]

    Bixler G D, Bhushan B 2013 Adv. Funct. Mater. 23 4507Google Scholar

    [9]

    Dean B, Bhushan B 2010 Philos. Trans. R. Soc. A 368 4775Google Scholar

    [10]

    Walsh M J 1982 AIAA 20th Aerospace Sciences Meeting Orlando Florida, January 11-14, 1982 p169

    [11]

    Walsh M J, M. L A 1984 AIAA 22th Aerospace Sciences Meeting Reno Nevada, January 9-12, 1984 p347

    [12]

    Djenidi L, Anselmet F, Liandrat J, Fulachier L 1994 Phys. Fluids 6 2993Google Scholar

    [13]

    Raayai-Ardakani S, Mckinley G H 2017 Phys. Fluids 29 93605Google Scholar

    [14]

    Haecheon C, Parviz M, John K 1991 Phys. Fluids A 3 1892

    [15]

    Grek G R, Kozlov V V, Titarenko S V, Klingmann B G B 1995 Phys. Fluids 7 2504Google Scholar

    [16]

    Arthur G K, Haecheon C, Parviz M 1993 Phys. Fluids A 3307

    [17]

    Bechert D W, Bruse M, Hage W, van der Hoeven J G T, Hoppe G 1997 J. Fluid Mech. 338 59Google Scholar

    [18]

    Yang S, Li S, Tian H, Wang Q, Jiang N 2016 Acta Mech. Sin. Prc. 32 284Google Scholar

    [19]

    Walsh M J 1983 AIAA J. 21 485

    [20]

    Goldstein D, Handler R, Sirovich L 1995 J. Fluid Mech. 302 333Google Scholar

    [21]

    El-Samni O A, Chun H H, Yoon H S 2007 Int. J. Eng. Sci. 45 436Google Scholar

    [22]

    Goldstein D B, Tuan T C 1998 J. Fluid Mech. 363 115Google Scholar

    [23]

    García-Mayoral R and Jiménez J 2011 J. Fluid Mech. 678 317Google Scholar

    [24]

    Lee S J, Lee S H 2001 Exp. Fluids 153

    [25]

    Suzuki Y, Kasagi N 1994 AIAA J. 32 1781Google Scholar

    [26]

    Choi H, Moin P, Kim J 1993 J. Fluid Mech. 255 503Google Scholar

    [27]

    Viswanath P R 2002 Prog. Aerosp. Sci. 38 571Google Scholar

    [28]

    García-Mayoral R, Jiménez J 2011 Philos. Trans. R. Soc. A 369 1412Google Scholar

    [29]

    Stenzel V, Wilke Y, Hage W 2011 Prog. Org. Coat. 70 224Google Scholar

    [30]

    Wassen E, Kramer F, Thiele F, Grüeneberger R, Hage W, Meyer R 2008 AIAA 4th Flow Control Conference Seattle Washington, June 23-26, 2008 p4204

    [31]

    Grüneberger R, Kramer F, Wassen E, Hage W, Meyer R, Thiele F 2012 Nature-Inspired Fluid Mechanics (Berlin: Springer) P311

    [32]

    Quadrio M, Luchini 1768 US Patent 057 662

    [33]

    Hagiwara H C F R 2013 J. Bioeng. 10 341Google Scholar

    [34]

    Peet Y, Sagaut P 2008 38th AIAA Fluid Dynamics Conference and Exhibit Seattle Washington, June 23-26, 2008 p3745

    [35]

    Peet Y, Sagaut P, Charron Y 2009 Int. J. Hydrogen Energy 34 8964Google Scholar

    [36]

    Peet Y, Sagaut P 2009 Phys. Fluids 21 105105Google Scholar

    [37]

    Adiran R J, Westerwell J 2011 Particle Image Velocimetry (Cambridge: Cambridge University Press)

    [38]

    Tang Z Q, Jiang N 2012 Exp. Fluids 53 343Google Scholar

    [39]

    Prasad A K, Adrian R J, Landreth C C, Offutt P W 1992 Exp. Fluids 105

    [40]

    Hooshmand D, Youngs R, M W J 1983 AIAA-paper 0230 0230

    [41]

    Bechert D W, Bartenwerfer M 1989 J. Fluid Mech. 206 105Google Scholar

    [42]

    樊星, 姜楠 2005 力学与实践 27 28Google Scholar

    Fan X, Jiang N 2005 Mech. Eng. 27 28Google Scholar

    [43]

    Wang J, Lan S, Chen G 2000 Fluid Dyne. Res. 27 217Google Scholar

    [44]

    李山, 杨绍琼, 姜楠 2013 力学学报 02 183Google Scholar

    Li S, Yang S, Jiang N 2013 Chin. J. Theor. Appl. Mech. 02 183Google Scholar

    [45]

    Jiménez J 2018 J. Fluid Mech. 842 1Google Scholar

    [46]

    Chen J, Hussain F, Pei J, She Z 2014 J. Fluid Mech. 742 291Google Scholar

    [47]

    Farano M, Cherubini S, De Palma P, Robinet J C 2018 Eur. J. Mech. B-Fluid 72 74Google Scholar

    [48]

    Perlin M, Steven D R D 2016 J. Fluids Eng. 138 091104Google Scholar

    [49]

    Jiménez J, Pinelli A 1999 J. Fluid Mech. 389 335Google Scholar

    [50]

    Zhou J, Adrian R J, Balachandar S, Kendall T M 1999 J. Fluid Mech. 387 353Google Scholar

    [51]

    Adrian R J, Meinhart C D, Tomkins C D 2000 J. Fluid Mech. 422 1Google Scholar

    [52]

    Li S, Jiang N, Yang S, Huang Y, Wu Y 2018 Chin. Phys. B 27 104701Google Scholar

    [53]

    Kline S J, Reynolds W C, Schraub F A, Runstadler P W 1967 J. Fluid Mech. 30 741Google Scholar

    [54]

    Nakagawa H, Nezu I 1981 J. Fluid Mech. 104 1Google Scholar

    [55]

    Smith C R, Metzler S P 1983 J. Fluid Mech. 129 27Google Scholar

    [56]

    Choi K S 2013 A. M. R. 745 27

  • 图 1  实验模型示意图 (a) 光滑平板; (b) 传统直线型沟槽板; (c) 正弦波型沟槽板

    Fig. 1.  Schematic diagram of experimental plates: (a) Smooth plate; (b) riblets; (c) s-riblets

    图 2  正弦波沟槽截面图 (a) 左视图; (b) 俯视图

    Fig. 2.  Cross section of s-riblets: (a) Left view; (b) top view

    图 3  实验装置示意图 (a) case 1; (b) case 2

    Fig. 3.  Schematic diagram of experimental setup: (a) case 1; (b) case 2.

    图 4  不同壁面流场的流向平均速度剖面

    Fig. 4.  Mean velocity profiles in TBL flows over test plates

    图 5  不同壁面流场湍流度的分布曲线

    Fig. 5.  Distribution of turbulent intensities over test plates

    图 6  不同壁面流场雷诺切应力的分布曲线

    Fig. 6.  Distribution of Reynolds shear stress over test plates

    图 7  不同壁面流场流向脉动速度在$x-y$平面内的相关系数

    Fig. 7.  Correlation coefficients of the streamwise fluctuation in $x-y$ plane over test plates

    图 8  特征向量空间中的局部流动[50]

    Fig. 8.  The local motion in the space spanned by the eigenvectors[50]

    图 9  $x-y$平面条件平均相干结构 (上) $y^{+}$ = 71.1; (下) $y^{+}$ = 128

    Fig. 9.  Conditionally-averaged structure in the $x-y$ plane: (top) $y^{+}$ = 71.1; (bottom) $y^{+}$ = 128

    图 10  Adrian等[51]提出的发卡涡模型

    Fig. 10.  The model of hairpin vortex proposed by Adrian et al.[51]

    图 11  $x-z$平面内不同壁面上流场$y^{+}$ = 9.7流向脉动速度云图

    Fig. 11.  Instantaneous streamwise fluctuating velocity in $x-z$ plane at $y^{+}$ = 9.7

    图 12  不同壁面上流场$u'$沿展向的自相关函数

    Fig. 12.  Autocorrelation function of $u'$ in the $z$-direction over test plates

    表 1  湍流边界层基本参数及减阻率

    Table 1.  Basic parameters and results for turbulent boundary layers over test plates.

    工况$U_{e}$ /m·s–1$\delta$/$\rm mm$$Re_{\tau}$$u_{\tau}$/cm·s–1$\tau_{w}$/$\rm kg\cdot(m\cdot s^{2})^{-1}$$C_{f}$$DR$/%
    平板0.170.2337.80.47130.022160.0044420
    2D沟槽0.171.6337.10.46110.021210.0042524.29
    S-沟槽0.171.63360.45960.021080.0042244.87
    平板0.266.4661.40.97560.094970.0047590
    2D沟槽0.267.8645.30.93220.086710.0043458.70
    S-沟槽0.268.5648.10.92660.085660.0042939.80
    下载: 导出CSV
  • [1]

    Christensen K T, Adrian R J 2001 J. Fluid Mech. 431 433Google Scholar

    [2]

    Adrian R J 2007 Phys. Fluids 19 41301Google Scholar

    [3]

    Eitel-Amor G, Örlü R, Schlatter P, Flores OAdrian R J 2015 Phys. Fluids 27 25108Google Scholar

    [4]

    Lu S S, Willmarth W W 1973 J. Fluid Mech. 60 481Google Scholar

    [5]

    Choi K 1989 J. Fluid Mech. 208 417Google Scholar

    [6]

    Orlandi P, Jiménez J 1994 Phys. Fluids 6 634Google Scholar

    [7]

    Bechert D W, Bruse M, Hage W, Meyer R 2000 Naturwissenschaften 87 157Google Scholar

    [8]

    Bixler G D, Bhushan B 2013 Adv. Funct. Mater. 23 4507Google Scholar

    [9]

    Dean B, Bhushan B 2010 Philos. Trans. R. Soc. A 368 4775Google Scholar

    [10]

    Walsh M J 1982 AIAA 20th Aerospace Sciences Meeting Orlando Florida, January 11-14, 1982 p169

    [11]

    Walsh M J, M. L A 1984 AIAA 22th Aerospace Sciences Meeting Reno Nevada, January 9-12, 1984 p347

    [12]

    Djenidi L, Anselmet F, Liandrat J, Fulachier L 1994 Phys. Fluids 6 2993Google Scholar

    [13]

    Raayai-Ardakani S, Mckinley G H 2017 Phys. Fluids 29 93605Google Scholar

    [14]

    Haecheon C, Parviz M, John K 1991 Phys. Fluids A 3 1892

    [15]

    Grek G R, Kozlov V V, Titarenko S V, Klingmann B G B 1995 Phys. Fluids 7 2504Google Scholar

    [16]

    Arthur G K, Haecheon C, Parviz M 1993 Phys. Fluids A 3307

    [17]

    Bechert D W, Bruse M, Hage W, van der Hoeven J G T, Hoppe G 1997 J. Fluid Mech. 338 59Google Scholar

    [18]

    Yang S, Li S, Tian H, Wang Q, Jiang N 2016 Acta Mech. Sin. Prc. 32 284Google Scholar

    [19]

    Walsh M J 1983 AIAA J. 21 485

    [20]

    Goldstein D, Handler R, Sirovich L 1995 J. Fluid Mech. 302 333Google Scholar

    [21]

    El-Samni O A, Chun H H, Yoon H S 2007 Int. J. Eng. Sci. 45 436Google Scholar

    [22]

    Goldstein D B, Tuan T C 1998 J. Fluid Mech. 363 115Google Scholar

    [23]

    García-Mayoral R and Jiménez J 2011 J. Fluid Mech. 678 317Google Scholar

    [24]

    Lee S J, Lee S H 2001 Exp. Fluids 153

    [25]

    Suzuki Y, Kasagi N 1994 AIAA J. 32 1781Google Scholar

    [26]

    Choi H, Moin P, Kim J 1993 J. Fluid Mech. 255 503Google Scholar

    [27]

    Viswanath P R 2002 Prog. Aerosp. Sci. 38 571Google Scholar

    [28]

    García-Mayoral R, Jiménez J 2011 Philos. Trans. R. Soc. A 369 1412Google Scholar

    [29]

    Stenzel V, Wilke Y, Hage W 2011 Prog. Org. Coat. 70 224Google Scholar

    [30]

    Wassen E, Kramer F, Thiele F, Grüeneberger R, Hage W, Meyer R 2008 AIAA 4th Flow Control Conference Seattle Washington, June 23-26, 2008 p4204

    [31]

    Grüneberger R, Kramer F, Wassen E, Hage W, Meyer R, Thiele F 2012 Nature-Inspired Fluid Mechanics (Berlin: Springer) P311

    [32]

    Quadrio M, Luchini 1768 US Patent 057 662

    [33]

    Hagiwara H C F R 2013 J. Bioeng. 10 341Google Scholar

    [34]

    Peet Y, Sagaut P 2008 38th AIAA Fluid Dynamics Conference and Exhibit Seattle Washington, June 23-26, 2008 p3745

    [35]

    Peet Y, Sagaut P, Charron Y 2009 Int. J. Hydrogen Energy 34 8964Google Scholar

    [36]

    Peet Y, Sagaut P 2009 Phys. Fluids 21 105105Google Scholar

    [37]

    Adiran R J, Westerwell J 2011 Particle Image Velocimetry (Cambridge: Cambridge University Press)

    [38]

    Tang Z Q, Jiang N 2012 Exp. Fluids 53 343Google Scholar

    [39]

    Prasad A K, Adrian R J, Landreth C C, Offutt P W 1992 Exp. Fluids 105

    [40]

    Hooshmand D, Youngs R, M W J 1983 AIAA-paper 0230 0230

    [41]

    Bechert D W, Bartenwerfer M 1989 J. Fluid Mech. 206 105Google Scholar

    [42]

    樊星, 姜楠 2005 力学与实践 27 28Google Scholar

    Fan X, Jiang N 2005 Mech. Eng. 27 28Google Scholar

    [43]

    Wang J, Lan S, Chen G 2000 Fluid Dyne. Res. 27 217Google Scholar

    [44]

    李山, 杨绍琼, 姜楠 2013 力学学报 02 183Google Scholar

    Li S, Yang S, Jiang N 2013 Chin. J. Theor. Appl. Mech. 02 183Google Scholar

    [45]

    Jiménez J 2018 J. Fluid Mech. 842 1Google Scholar

    [46]

    Chen J, Hussain F, Pei J, She Z 2014 J. Fluid Mech. 742 291Google Scholar

    [47]

    Farano M, Cherubini S, De Palma P, Robinet J C 2018 Eur. J. Mech. B-Fluid 72 74Google Scholar

    [48]

    Perlin M, Steven D R D 2016 J. Fluids Eng. 138 091104Google Scholar

    [49]

    Jiménez J, Pinelli A 1999 J. Fluid Mech. 389 335Google Scholar

    [50]

    Zhou J, Adrian R J, Balachandar S, Kendall T M 1999 J. Fluid Mech. 387 353Google Scholar

    [51]

    Adrian R J, Meinhart C D, Tomkins C D 2000 J. Fluid Mech. 422 1Google Scholar

    [52]

    Li S, Jiang N, Yang S, Huang Y, Wu Y 2018 Chin. Phys. B 27 104701Google Scholar

    [53]

    Kline S J, Reynolds W C, Schraub F A, Runstadler P W 1967 J. Fluid Mech. 30 741Google Scholar

    [54]

    Nakagawa H, Nezu I 1981 J. Fluid Mech. 104 1Google Scholar

    [55]

    Smith C R, Metzler S P 1983 J. Fluid Mech. 129 27Google Scholar

    [56]

    Choi K S 2013 A. M. R. 745 27

  • [1] 张鹏, 张彦如, 张福建, 刘珍, 张忠强. 纳米限域Couette流边界气泡减阻机理. 物理学报, 2024, 73(15): 154701. doi: 10.7498/aps.73.20240474
    [2] 季梦, 尤云祥, 韩盼盼, 邱小平, 马乔, 吴凯健. 亚临界区圆柱绕流相干结构壁面模化混合RANS/LES模型. 物理学报, 2024, 73(5): 054701. doi: 10.7498/aps.73.20231745
    [3] 陈蒋力, 陈少强, 任峰, 胡海豹. 基于壁面压力反馈的圆柱绕流减阻智能控制. 物理学报, 2022, 71(8): 084701. doi: 10.7498/aps.71.20212171
    [4] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [5] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [6] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [7] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响. 物理学报, 2015, 64(9): 094703. doi: 10.7498/aps.64.094703
    [8] 王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究. 物理学报, 2014, 63(7): 074702. doi: 10.7498/aps.63.074702
    [9] 郎莎莎, 耿兴国, 臧渡洋. 八重准周期排列的短沟槽结构减阻机理分析. 物理学报, 2014, 63(8): 084704. doi: 10.7498/aps.63.084704
    [10] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [11] 王晓娜, 耿兴国, 臧渡洋. 一维周期与准周期排列沟槽结构的流体减阻特性研究. 物理学报, 2013, 62(5): 054701. doi: 10.7498/aps.62.054701
    [12] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [13] 张盟, 耿兴国, 张瑶, 王晓娜. 一维短沟槽复合准晶结构减阻效应及模拟分析. 物理学报, 2012, 61(19): 194702. doi: 10.7498/aps.61.194702
    [14] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [15] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [16] 李晋红, 杨爱林, 吕百达. 部分相干厄米-双曲正弦-高斯光束通过湍流大气传输的平均光强分布演化和角扩展. 物理学报, 2009, 58(1): 674-683. doi: 10.7498/aps.58.674
    [17] 高鹏, 耿兴国, 欧修龙, 薛文辉. 人工构建二维准晶复合结构的减阻特性研究. 物理学报, 2009, 58(1): 421-426. doi: 10.7498/aps.58.421
    [18] 张解放, 韩平. (2+1)维Broer-Kaup方程的局域相干结构. 物理学报, 2002, 51(4): 705-711. doi: 10.7498/aps.51.705
    [19] 贺凯芬, 胡岗. 微扰法解由正弦波驱动的非线性漂移波的分岔. 物理学报, 1991, 40(12): 1948-1954. doi: 10.7498/aps.40.1948
    [20] 李清润. O17和F17低能反宇称态的相干结构. 物理学报, 1965, 21(7): 1370-1380. doi: 10.7498/aps.21.1370
计量
  • 文章访问数:  8742
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-19
  • 修回日期:  2019-02-16
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回