搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离激元共振能量转移与增强光催化研究进展

周利 王取泉

引用本文:
Citation:

等离激元共振能量转移与增强光催化研究进展

周利, 王取泉

Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis

Zhou Li, Wang Qu-Quan
PDF
HTML
导出引用
  • 等离激元共振能量转移指表面等离激元将俘获的能量通过偶极-偶极相互作用转移到邻近的半导体或分子等激子体系中, 它是等离激元非辐射弛豫的一个通道, 也可作为获取和利用等离激元共振能量的一种方式. 此外, 等离激元能量还可以通过热电子弛豫(非辐射)和光散射(辐射)等方式耗散. 等离激元各个弛豫通道之间存在着很强的关联, 相关的能量转移和电荷转移过程可以将等离激元耗散的能量输送到其他体系或转换为其他能量形式. 本文主要介绍了等离激元共振能量转移和与其相关的能量和电荷转移过程(包括等离激元近场增强及耦合、远场散射、热电子弛豫等)的物理机制和动力学性质, 并详细介绍了这些机制在增强光催化研究领域的最新进展.
    Plasmon resonance energy transfer refers to the coherent energy transfer via dipole-dipole coupling from surface plasmons to adjacent exciton nanosystems such as semiconductor quantum dots or dye molecules. The plasmon resonance energy transfer is a non-radiative plasmon decay pathway, which can also act as an available channel to extract the plasmon-harvested energy. In addition, hot electron relaxation (non-radiative channel) and scattering (radiative channel) are also the dissipation pathways of surface plasmon resonances. The plasmon-harvested energy can be effectively transferred to other nanosystems or converted into other energy forms through these correlated dissipation pathways. In this paper, the underlying mechanism and dynamics of the plasmon resonance energy transfer as well as the related energy and charge transfer processes (such as near field enhancement and coupling, far field scattering, plasmon-induced hot electron transfer) are introduced. The recent research progress of the plasmon-enhanced photocatalysis by energy and charge transfer is reviewed.
      通信作者: 王取泉, qqwang@whu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0303402)、国家自然科学基金(批准号: 11874293, 91750113, 11674254)、湖北省自然科学基金(批准号: 2018CFB572)和武汉大学基金资助的课题.
      Corresponding author: Wang Qu-Quan, qqwang@whu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303402), the National Natural Science Foundation of China (Grant Nos. 11874293, 91750113, 11674254), the Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB572), and the Young Talent Training Program of Wuhan University, China.
    [1]

    Liu G L, Long Y T, Choi Y, Kang T, Lee L P 2007 Nat. Meth. 4 1015Google Scholar

    [2]

    Choi Y, Park Y, Kang T, Lee L P 2009 Nat. Nanotechnol. 4 742Google Scholar

    [3]

    Li J T, Cushing S K, Meng F K, Senty T R, Bristow A D, Wu N Q 2015 Nat. Photon. 9 601Google Scholar

    [4]

    Engel G S, Calhoun T R, Read E L, Ahn T K, Mancal T, Cheng Y C, Blankenship R E, Fleming G R 2007 Nature 446 782Google Scholar

    [5]

    Mirkovic T, Ostroumov E E, Anna J M, van Grondelle R, Govindjee, Scholes G D 2017 Chem. Rev. 117 249Google Scholar

    [6]

    Förster T 1948 Ann. Phys. 437 55Google Scholar

    [7]

    Selvin P R 2000 Nat. Struct. Biol. 7 730Google Scholar

    [8]

    Clapp A R, Medintz I L, Mattoussi H 2006 ChemPhysChem 7 47Google Scholar

    [9]

    Govorov A O, Lee J, Kotov N A 2007 Phys. Rev. B 76 125308Google Scholar

    [10]

    Su X R, Zhang W, Zhou L, Peng X N, Pang D W, Liu S D, Zhou Z K, Wang Q Q 2010 Appl. Phys. Lett. 96 043106Google Scholar

    [11]

    Su X R, Zhang W, Zhou L, Peng X N, Wang Q Q 2010 Opt. Express 18 6516Google Scholar

    [12]

    Lunz M, Gerard V A, Gun'ko Y K, Lesnyak V, Gaponik N, Susha A S, Rogach A L, Bradley A L 2011 Nano Lett. 11 3341Google Scholar

    [13]

    Cushing S K, Li J T, Meng F K, Senty T R, Suri S, Zhi M J, Li M, Bristow A D, Wu N Q 2012 J. Am. Chem. Soc. 134 15033Google Scholar

    [14]

    Choi Y H, Kang T, Lee L P 2009 Nano Lett. 9 85Google Scholar

    [15]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [16]

    Serpone N, Emeline A V 2012 J. Phys. Chem. Lett. 3 673Google Scholar

    [17]

    Hashimoto K, Irie H, Fujishima A 2005 Jpn. J. Appl. Phys. 44 8269Google Scholar

    [18]

    Schneider J, Matsuoka M, Takeuchi M, Zhang J L, Horiuchi Y, Anpo M, Bahnemann D W 2014 Chem. Rev. 114 9919Google Scholar

    [19]

    Nakata K, Fujishima A 2012 J. Photoch. Photobio. C 13 169Google Scholar

    [20]

    Zhang X M, Chen Y L, Liu R S, Tsai D P 2013 Rep. Prog. Phys. 76 046401Google Scholar

    [21]

    Kale M J, Avanesian T, Christopher P 2014 ACS Catal. 4 116Google Scholar

    [22]

    Liu L Q, Zhang X N, Yang L F, Ren L T, Wang D F, Ye J H 2017 Natl. Sci. Rev. 4 761Google Scholar

    [23]

    Warren S C, Thimsen E 2012 Energ. Environ. Sci. 5 5133Google Scholar

    [24]

    Linic S, Aslam U, Boerigter C, Morabito M 2015 Nat. Mater. 14 567Google Scholar

    [25]

    Erwin W R, Zarick H F, Talbert E M, Bardhan R 2016 Energ. Environ. Sci. 9 1577Google Scholar

    [26]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnol. 10 25Google Scholar

    [27]

    Hartland G V, Besteiro L V, Johns P, Govorov A O 2017 ACS Energy Lett. 2 1641Google Scholar

    [28]

    Foerster B, Joplin A, Kaefer K, Celiksoy S, Link S, Sönnichsen C 2017 ACS Nano 11 2886Google Scholar

    [29]

    Zijlstra P, Paulo P M, Yu K, Xu Q, Orrit M 2012 Angew. Chem. 124 8477Google Scholar

    [30]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [31]

    Clavero C 2014 Nat. Photon. 8 95Google Scholar

    [32]

    Jia C C, Li X X, Xin N, Gong Y, Guan J X, Meng L A, Meng S, Guo X F 2016 Adv. Energy Mater. 6 1600431Google Scholar

    [33]

    Li W, Valentine J G 2017 Nanophotonics 6 177

    [34]

    Li X H, Zhu J M, Wei B Q 2016 Chem. Soc. Rev. 45 3145Google Scholar

    [35]

    Wang M Y, Ye M D, Iocozzia J, Lin C J, Lin Z Q 2016 Adv. Sci. 3 1600024Google Scholar

    [36]

    Ma X C, Dai Y, Yu L, Huang B B 2016 Light Sci. Appl. 5 e16017Google Scholar

    [37]

    DuChene J S, Tagliabue G, Welch A J, Cheng W H, Atwater H A 2018 Nano Lett. 18 2545Google Scholar

    [38]

    Schather A E, Manjavacas A, Lauchner A, Marangoni V S, DeSantis C J, Nordlander P, Halas N J 2017 J. Phys. Chem. Lett. 8 2060Google Scholar

    [39]

    Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155Google Scholar

    [40]

    Ding S J, Yang D J, Li J L, Pan G M, Ma L, Lin Y J, Wang J H, Zhou L, Feng M, Xu H X, Gao S W, Wang Q Q 2017 Nanoscale 9 3188Google Scholar

    [41]

    Zhang Y C, He S, Guo W X, Hu Y, Huang J W, Mulcahy J R, Wei W D 2018 Chem. Rev. 118 2927Google Scholar

    [42]

    Park J Y, Kim S M, Lee H, Nedrygailov I I 2015 Acc. Chem. Res. 48 2475Google Scholar

    [43]

    Zhan C, Chen X J, Yi J, Li J F, Wu D Y, Tian Z Q 2018 Nat. Rev. Chem. 2 216Google Scholar

    [44]

    Xie W, Schlucker S 2015 Nat. Commun. 6 7570Google Scholar

    [45]

    Cortes E, Xie W, Cambiasso J, Jermyn A S, Sundararaman R, Narang P, Schlucker S, Maier S A 2017 Nat. Commun. 8 14880Google Scholar

    [46]

    Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2014 J. Am. Chem. Soc. 136 64Google Scholar

    [47]

    Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P, Halas N J 2013 Nano Lett. 13 240Google Scholar

    [48]

    Huschka R, Zuloaga J, Knight M W, Brown L V, Nordlander P, Halas N J 2011 J. Am. Chem. Soc. 133 12247Google Scholar

    [49]

    Furube A, Hashimoto S 2017 NPG Asia Mater. 9 e454Google Scholar

    [50]

    Wang S Y, Gao Y Y, Miao S, Liu T F, Mu L C, Li R G, Fan F T, Li C 2017 J. Am. Chem. Soc. 139 11771Google Scholar

    [51]

    Zhai Y M, DuChene J S, Wang Y C, Qiu J J, Johnston-Peck A C, You B, Guo W X, DiCiaccio B, Qian K, Zhao E W, Ooi F, Hu D H, Su D, Stach E A, Zhu Z H, Wei W D 2016 Nat. Mater. 15 889Google Scholar

    [52]

    Fang Z Y, Wang Y M, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P, Halas N J 2012 ACS Nano 6 10222Google Scholar

    [53]

    Kang Y M, Najmaei S, Liu Z, Bao Y J, Wang Y M, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z Y 2014 Adv. Mater. 26 6467Google Scholar

    [54]

    Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E 2016 Adv. Colloid Interface Sci. 229 80Google Scholar

    [55]

    Gilroy K D, Ruditskiy A, Peng H C, Qin D, Xia Y N 2016 Chem. Rev. 116 10414Google Scholar

    [56]

    Govorov A O, Zhang H, Demir H V, Gun'ko Y K 2014 Nano Today 9 85Google Scholar

    [57]

    Fofang N T, Grady N K, Fan Z Y, Govorov A O, Halas N J 2011 Nano Lett. 11 1556Google Scholar

    [58]

    Hao Y W, Wang H Y, Jiang Y, Chen Q D, Ueno K, Wang W Q, Misawa H, Sun H B 2011 Angew. Chem. Int. Ed. 50 7824Google Scholar

    [59]

    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C 2013 Nat. Photon. 7 128Google Scholar

    [60]

    Nan F, Zhang Y F, Li X G, Zhang X T, Li H, Zhang X H, Jiang R B, Wang J F, Zhang W, Zhou L, Wang J H, Wang Q Q, Zhang Z Y 2015 Nano Lett. 15 2705Google Scholar

    [61]

    Faucheaux J A, Fu J, Jain P K 2014 J. Phys. Chem. C 118 2710Google Scholar

    [62]

    Torma P, Barnes W L 2015 Rep. Prog. Phys. 78 013901Google Scholar

    [63]

    Li X G, Zhou L, Hao Z H, Wang Q Q 2018 Adv. Opt. Mater. 6 1800275Google Scholar

    [64]

    Yin T T, Jiang L Y, Shen Z X 2018 Chin. Phys. B 27 097803Google Scholar

    [65]

    Nan F, Cheng Z Q, Wang Y L, Zhang Q, Zhou L, Yang Z J, Zhong Y T, Liang S, Xiong Q H, Wang Q Q 2014 Sci. Rep. 4 4839

    [66]

    Ding S J, Nan F, Yang D J, Liu X L, Wang Y L, Zhou L, Hao Z H, Wang Q Q 2015 Sci. Rep. 5 9735Google Scholar

    [67]

    Bellessa J, Bonnand C, Plenet J C, Mugnier J 2004 Phys. Rev. Lett. 93 036404Google Scholar

    [68]

    Dintinger J, Klein S, Bustos F, Barnes W L, Ebbesen T W 2005 Phys. Rev. B 71 035424Google Scholar

    [69]

    Vasa P, Pomraenke R, Schwieger S, Mazur Y I, Kunets V, Srinivasan P, Johnson E, Kihm J E, Kim D S, Runge E, Salamo G, Lienau C 2008 Phys. Rev. Lett. 101 116801Google Scholar

    [70]

    Fofang N T, Park T H, Neumann O, Mirin N A, Nordlander P, Halas N J 2008 Nano Lett. 8 3481Google Scholar

    [71]

    Ni W H, Yang Z, Chen H J, Li L, Wang J F 2008 J. Am. Chem. Soc. 130 6692Google Scholar

    [72]

    Ni W H, Ambjornsson T, Apell S P, Chen H J, Wang J F 2010 Nano Lett. 10 77Google Scholar

    [73]

    Zhang Y F, Yang D J, Wang J H, Wang Y L, Ding S J, Zhou L, Hao Z H, Wang Q Q 2015 Nanoscale 7 8503Google Scholar

    [74]

    DeLacy B G, Miller O D, Hsu C W, Zander Z, Lacey S, Yagloski R, Fountain A W, Valdes E, Anquillare E, Soljacic M, Johnson S G, Joannopoulos J D 2015 Nano Lett. 15 2588Google Scholar

    [75]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281Google Scholar

    [76]

    Wurtz G A, Evans P R, Hendren W, Atkinson R, Dickson W, Pollard R J, Zayats A V, Harrison W, Bower C 2007 Nano Lett. 7 1297Google Scholar

    [77]

    Zheng Y B, Juluri B K, Jensen L L, Ahmed D, Lu M Q, Jensen L, Huang T J 2010 Adv. Mater. 22 3603Google Scholar

    [78]

    Sugawara Y, Kelf T A, Baumberg J J, Abdelsalam M E, Bartlett P N 2006 Phys. Rev. Lett. 97 266808Google Scholar

    [79]

    Liu W J, Lee B, Naylor C H, Ee H S, Park J, Johnson A T C, Agarwal R 2016 Nano Lett. 16 1262Google Scholar

    [80]

    Lee B, Liu W J, Naylor C H, Park J, Malek S C, Berger J S, Johnson A T C, Agarwal R 2017 Nano Lett. 17 4541Google Scholar

    [81]

    Wang S J, Li S L, Chervy T, Shalabney A, Azzini S, Orgiu E, Hutchison J A, Genet C, Samori P, Ebbesen T W 2016 Nano Lett. 16 4368Google Scholar

    [82]

    Cuadra J, Baranov D G, Wersall M, Verre R, Antosiewicz T J, Shegai T 2018 Nano Lett. 18 1777Google Scholar

    [83]

    Zheng D, Zhang S P, Deng Q, Kang M, Nordlander P, Xu H X 2017 Nano Lett. 17 3809Google Scholar

    [84]

    Lawrie B J, Kim K W, Norton D P, Haglund R F 2012 Nano Lett. 12 6152Google Scholar

    [85]

    Wang H, Ke Y L, Xu N S, Zhan R Z, Zheng Z B, Wen J X, Yan J H, Liu P, Chen J, She J C, Zhang Y, Liu F, Chen H J, Deng S Z 2016 Nano Lett. 16 6886Google Scholar

    [86]

    Ding S J, Li X G, Nan F, Zhong Y T, Zhou L, Xiao X D, Wang Q Q, Zhang Z Y 2017 Phys. Rev. Lett. 119 177401Google Scholar

    [87]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [88]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823Google Scholar

    [89]

    Nan F, Ding S J, Ma L, Cheng Z Q, Zhong Y T, Zhang Y F, Qiu Y H, Li X G, Zhou L, Wang Q Q 2016 Nanoscale 8 15071Google Scholar

    [90]

    Cushing S K, Li J T, Bright J, Yost B T, Zheng P, Bristow A D, Wu N Q 2015 J. Phys. Chem. C 119 16239Google Scholar

    [91]

    Li J T, Cushing S K, Zheng P, Meng F K, Chu D, Wu N Q 2013 Nat. Commun. 4 2651Google Scholar

    [92]

    Wu N Q 2018 Nanoscale 10 2679Google Scholar

    [93]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [94]

    Wadell C, Antosiewicz T J, Langhammer C 2012 Nano Lett. 12 4784Google Scholar

    [95]

    Swearer D F, Zhao H Q, Zhou L N, Zhang C, Robatjazi H, Martirez J M P, Krauter C M, Yazdi S, McClain M J, Ringe E, Carter E A, Nordlander P, Halas N J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 8916Google Scholar

    [96]

    Zhang C, Zhao H Q, Zhou L A, Schlather A E, Dong L L, McClain M J, Swearer D F, Nordlander P, Halas N J 2016 Nano Lett. 16 6677Google Scholar

    [97]

    Li K, Hogan N J, Kale M J, Halas N J, Nordlander P, Christopher P 2017 Nano Lett. 17 3710Google Scholar

    [98]

    Robatjazi H, Zhao H Q, Swearer D F, Hogan N J, Zhou L N, Alabastri A, McClain M J, Nordlander P, Halas N J 2017 Nat. Commun. 8 27Google Scholar

    [99]

    Chen K, Ding S J, Luo Z J, Pan G M, Wang J H, Liu J, Zhou L, Wang Q Q 2018 Nanoscale 10 4130Google Scholar

    [100]

    Mubeen S, Lee J, Singh N, Kramer S, Stucky G D, Moskovits M 2013 Nat. Nanotechnol. 8 247Google Scholar

    [101]

    Cushing S K 2017 Nat. Photon. 11 748Google Scholar

    [102]

    Petek H 2012 J. Chem. Phys. 137 091704Google Scholar

    [103]

    Narang P, Sundararaman R, Atwater H A 2016 Nanophotonics 5 96

    [104]

    Sundararaman R, Narang P, Jermyn A S, Goddard W A, Atwater H A 2014 Nat. Commun. 5 5788Google Scholar

    [105]

    Manjavacas A, Liu J G, Kulkarni V, Nordlander P 2014 ACS Nano 8 7630Google Scholar

    [106]

    Govorov A O, Zhang H 2015 J. Phys. Chem. C 119 6181Google Scholar

    [107]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957Google Scholar

    [108]

    Besteiro L V, Kong X T, Wang Z M, Hartland G, Govorov A O 2017 ACS Photon. 4 2759Google Scholar

    [109]

    Dal Forno S, Ranno L, Lischner J 2018 J. Phys. Chem. C 122 8517Google Scholar

    [110]

    Liu L Q, Ouyang S X, Ye J H 2013 Angew. Chem. Int. Ed. 52 6689Google Scholar

    [111]

    Ma L, Liang S, Liu X L, Yang D J, Zhou L, Wang Q Q 2015 Adv. Funct. Mater. 25 898Google Scholar

    [112]

    Naya S, Kume T, Akashi R, Fujishima M, Tada H 2018 J. Am. Chem. Soc. 140 1251Google Scholar

    [113]

    Wang J H, Chen M, Luo Z J, Ma L, Zhang Y F, Chen K, Zhou L, Wang Q Q 2016 J. Phys. Chem. C 120 14805Google Scholar

    [114]

    Ma L, Yang D J, Luo Z J, Chen K, Xie Y, Zhou L, Wang Q Q 2016 J. Phys. Chem. C 120 26996Google Scholar

    [115]

    Li J T, Cushing S K, Zheng P, Senty T, Meng F K, Bristow A D, Manivannan A, Wu N Q 2014 J. Am. Chem. Soc. 136 8438Google Scholar

    [116]

    Ma L, Chen K, Nan F, Wang J H, Yang D J, Zhou L, Wang Q Q 2016 Adv. Funct. Mater. 26 6076Google Scholar

    [117]

    Ma S, Chen K, Qiu Y H, Gong L L, Pan G M, Lin Y J, Hao Z H, Zhou L, Wang Q Q 2019 J. Mater. Chem. A 7 3408Google Scholar

    [118]

    Chen K, Ma L, Wang J H, Cheng Z Q, Yang D J, Li Y Y, Ding S J, Zhou L, Wang Q Q 2017 RSC Adv. 7 26097Google Scholar

    [119]

    Li Y Y, Wang J H, Luo Z J, Chen K, Cheng Z Q, Ma L, Ding S J, Zhou L, Wang Q Q 2017 Sci. Rep. 7 7178Google Scholar

    [120]

    Liu J, Chen K, Pan G M, Luo Z J, Xie Y, Li Y Y, Lin Y J, Hao Z H, Zhou L, Ding S J, Wang Q Q 2018 Nanoscale 10 19586Google Scholar

    [121]

    Zheng B Y, Zhao H Q, Manjavacas A, McClain M, Nordlander P, Halas N J 2015 Nat. Commun. 6 7797Google Scholar

    [122]

    Mubeen S, Hernandez-Sosa G, Moses D, Lee J, Moskovits M 2011 Nano Lett. 11 5548Google Scholar

    [123]

    de Arquer F P G, Mihi A, Kufer D, Konstantatos G 2013 ACS Nano 7 3581Google Scholar

    [124]

    Shiraishi Y, Yasumoto N, Imai J, Sakamoto H, Tanaka S, Ichikawa S, Ohtani B, Hirai T 2017 Nanoscale 9 8349Google Scholar

    [125]

    Wang F, Li C H, Chen H J, Jiang R B, Sun L D, Li Q, Wang J F, Yu J C, Yan C H 2013 J. Am. Chem. Soc. 135 5588Google Scholar

    [126]

    Zheng Z K, Tachikawa T, Majima T 2014 J. Am. Chem. Soc. 136 6870Google Scholar

    [127]

    Zheng Z K, Tachikawa T, Majima T 2015 J. Am. Chem. Soc. 137 948Google Scholar

    [128]

    Aslam U, Chavez S, Linic S 2017 Nat. Nanotechnol. 12 1000Google Scholar

    [129]

    Rao V G, Aslam U, Linic S 2019 J. Am. Chem. Soc. 141 643Google Scholar

    [130]

    Chavez S, Aslam U, Linic S 2018 ACS Energy Lett. 3 1590Google Scholar

    [131]

    Christopher P, Xin H L, Linic S 2011 Nat. Chem. 3 467Google Scholar

    [132]

    Christopher P, Xin H L, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044Google Scholar

    [133]

    Zhou L A, Swearer D F, Zhang C, Robatjazi H, Zhao H Q, Henderson L, Dong L L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [134]

    Wu K, Chen J, McBride J R, Lian T 2015 Science 349 632Google Scholar

    [135]

    Boerigter C, Campana R, Morabito M, Linic S 2016 Nat. Commun. 7 10545Google Scholar

    [136]

    Boerigter C, Aslam U, Linic S 2016 ACS Nano 10 6108Google Scholar

    [137]

    Kale M J, Avanesian T, Xin H L, Yan J, Christopher P 2014 Nano Lett. 14 5405Google Scholar

  • 图 1  等离激元激发与弛豫, 以及由此产生的等离激元效应[25]

    Fig. 1.  Plasmon-mediated effects induced by light excitation and subsequent relaxation[25]

    图 2  等离激元-激子Fano干涉引起的等离激元共振能量转移PRET[60, 89] (a) Au@IR-806的Fano干涉消光谱; (b) Au纳米棒的时间分辨差分透射谱呈现为基态漂白/饱和吸收效应(透过率变化ΔI > 0); (c) Au@IR-806核壳纳米棒的时间分辨差分透射谱呈现为吸收效应(透过率变化ΔI < 0); (d) 等离激元到叶绿素a (Chl-a)的PRET示意图; (e) Au@Chl复合体系的PRET增强光伏效应; (f) Au@Chl复合体系光伏电池和纯Au纳米颗粒膜光伏电池(AuNFs)的短路电流和开路电压随等离激元波长的变化关系

    Fig. 2.  PRET of plasmon-exciton Fano interference[60, 89]: (a) Fano resonance of Au@IR-806; dynamics of the differential transmissions (ΔI) of (b) Au nanorods and (c) Au@IR-806 at different wavelengths; (d) schematic illustration of PRET in Au@Chl-a; (e) enhanced photovoltaics by PRET of Au@Chl-a; (f) short-circuit current Jsc and open-circuit voltage Voc of bare AuNF- and Au@Chl-sensitized solar cells as a function of λSPR.

    图 3  Au@SiO2@Cu2O体系的PRET/PIRET增强光催化[3, 13] (a) PRET/PIRET和FRET示意图, PIRET是指Au等离激元吸收能量转移至Cu2O中, 而FRET则是Cu2O吸收能量转移至Au中; (b) SiO2层可以阻止等离激元热电子转移过程(DET); (c) 相对增强因子随激发波长的变化关系

    Fig. 3.  Enhanced photocatalytic activity of Au@SiO2@Cu2O by PRET/PIRET[3, 13]: (a) PIRET indicates the energy transfer from excited plasmon to Cu2O, and FRET indicates the energy transfer from excited Cu2O to plasmon; (b) SiO2 layer is designed to prevent the plasmon-induced hot electron transfer (DET); (c) relative enhancement as a function of excitation wavelength.

    图 4  基于近场耦合的天线/反应器纳米复合体系增强光催化 (a) Al-Pd异质二聚体的光催化氢分解反应示意图[96]; (b) 天线-反应器吸收增强的模拟计算, 红色实线为Al@Al2O3@Pd结构Pd中的吸收光谱, 黑色实线为单独Pd在Al2O3上的吸收, 蓝色实线为Al@Al2O3天线Al2O3壳层中的近场增强, 红色虚线为单独Pd的吸收乘上近场增强[95]; (c) Al@Al2O3@Pd光催化HD分子脱附产量随激发波长的变化关系[95]; (d) Al@AlO2@Cu2O核壳纳米颗粒的光催化CO2还原反应示意图[98]; (e) Au/MoS2/Au局域场分布[99]; (e) Au/MoS2/Au核壳纳米颗粒的光催化制氢示意图[99]

    Fig. 4.  Antenna/reactor photocatalysts based on near-field coupling: (a) Al-Pd nanodisk heterodimers for hydron dissociation[96]; (b) red solid line is absorption in Pd for Al@Al2O3@Pd, black solid line is absorption of isolated Pd on Al2O3, blue solid line is near-field enhancement in Al2O3 layer of Al@Al2O3, red dashed line is isolated Pd absorption multiplied by field enhancement[95]; (c) wavelength dependence of HD production on Al@Al2O3@Pd and Al@Al2O3[95]; (d) Al@Al2O3@Cu2O for CO2 conversion[98]; (e) local field distribution of Au/MoS2/Au[99]; (f) Au/MoS2/Au for hydrogen generation[99]

    图 5  肖特基热电子注入和欧姆接触电荷转移 (a) 跨越Au/TiO2肖特基势垒的热电子注入, Pt和Co纳米颗粒分别作为还原反应和氧化反应的共催化剂[100]; (b) 通过Au/Ti/TiO2欧姆接触的电荷转移, 低能的d带跃迁电子也可以转移到TiO2[121]

    Fig. 5.  Schottky barrier and Ohmic contact: (a) Plasmon-induced hot electron injection over the Schottky barrier of Au/TiO2, Pt and Co nanoparticles act as co-catalysts for reduction and oxidation reactions, respectively[100]; (b) low-energy electrons due to d-sp interband transition transfer to TiO2 across the Ohmic contact of Au/Ti/TiO2[121]

    图 6  由等离激元金属和催化活性金属构成的双金属光催化剂 (a) 两端修饰Pt纳米颗粒的Au纳米棒用于光催化制氢的示意图(左图), 以及其消光光谱和表观量子效率与激发波长的关系(右图)[126]; (b) 75 nm的Ag纳米立方(左图)和Ag-Pt核壳纳米立方(右图)的消光、吸收和散射光谱, 包覆约1 nm厚的超薄Pt壳层后, 等离激元消光谱由散射为主(辐射损耗)演变为吸收为主(热电子弛豫)[128]

    Fig. 6.  Bimetallic photocatalysts composed by plasmonic metal and catalytic metal: (a) Pt-modified Au nanorods for photocatalytic hydrogen generation (left), extinction spectra and action spectra of AQE (right)[126]; (b) extinction, absorption and scattering spectra of Ag nanocubes (left) and Ag-Pt nanocubes with 1 nm Pt shells (right), the scattering (radiative decay) dominates the extinction of Ag nanocubes while the absorption (hot electron decay) dominants the extinction of Ag-Pt[128]

    图 7  (a)热电子转移激发TNI态和热激发实现分子活化的示意图[131]; (b) Cu-Ru合金纳米颗粒催化NH3气分解过程中光催化速率与光热效应催化速率的比较[133]

    Fig. 7.  (a) Schematic illustration of TNI formation induced by hot electron transfer and thermal excitation for activation[131]; (b) photocatalytic and thermocatalytic H2 production rate by Cu-Ru, Cu, and Ru nanoparticles[133]

    图 8  直接热电子转移过程 (a) 金属/半导体异质纳米结构中的间接热电子转移过程(左), 直接激发界面电荷转移(中)和直接热电子转移PICTT机制(右)[134]; (b) 金属/分子界面直接热电子激发(左)和间接热电子转移(右)[135]

    Fig. 8.  Direct hot electron transfer: (a) Plasmon-induced hot-electron transfer (left), direct metal-to-semiconductor interfacial charge transfer transition (middle) and plasmon-induced metal-to-semiconductor interfacial charge transfer transition[134]; (b) direct formation of energetic electron-hole pair by plasmon decay (left) and indirect process by plasmon decay induced hot electron generation and transfer (right)[135]

    图 9  直接光激发金属-分子杂化态跃迁[137] (a) 间接热电子转移; (b) 弱耦合情况下光激发分子HOMO-LOMO跃迁; (c) 强耦合情况下光激发杂化态跃迁

    Fig. 9.  Direct photoexcitation of hybridized states[137]: (a) Indirect photoexcitation hot charge transfer; (b) direct photoexcitation of intramolecular HOMO-LUMO transition in weakly coupled nanosystem; (c) direct photoexcitation of hybridized state transition in strongly coupled nanosystem.

  • [1]

    Liu G L, Long Y T, Choi Y, Kang T, Lee L P 2007 Nat. Meth. 4 1015Google Scholar

    [2]

    Choi Y, Park Y, Kang T, Lee L P 2009 Nat. Nanotechnol. 4 742Google Scholar

    [3]

    Li J T, Cushing S K, Meng F K, Senty T R, Bristow A D, Wu N Q 2015 Nat. Photon. 9 601Google Scholar

    [4]

    Engel G S, Calhoun T R, Read E L, Ahn T K, Mancal T, Cheng Y C, Blankenship R E, Fleming G R 2007 Nature 446 782Google Scholar

    [5]

    Mirkovic T, Ostroumov E E, Anna J M, van Grondelle R, Govindjee, Scholes G D 2017 Chem. Rev. 117 249Google Scholar

    [6]

    Förster T 1948 Ann. Phys. 437 55Google Scholar

    [7]

    Selvin P R 2000 Nat. Struct. Biol. 7 730Google Scholar

    [8]

    Clapp A R, Medintz I L, Mattoussi H 2006 ChemPhysChem 7 47Google Scholar

    [9]

    Govorov A O, Lee J, Kotov N A 2007 Phys. Rev. B 76 125308Google Scholar

    [10]

    Su X R, Zhang W, Zhou L, Peng X N, Pang D W, Liu S D, Zhou Z K, Wang Q Q 2010 Appl. Phys. Lett. 96 043106Google Scholar

    [11]

    Su X R, Zhang W, Zhou L, Peng X N, Wang Q Q 2010 Opt. Express 18 6516Google Scholar

    [12]

    Lunz M, Gerard V A, Gun'ko Y K, Lesnyak V, Gaponik N, Susha A S, Rogach A L, Bradley A L 2011 Nano Lett. 11 3341Google Scholar

    [13]

    Cushing S K, Li J T, Meng F K, Senty T R, Suri S, Zhi M J, Li M, Bristow A D, Wu N Q 2012 J. Am. Chem. Soc. 134 15033Google Scholar

    [14]

    Choi Y H, Kang T, Lee L P 2009 Nano Lett. 9 85Google Scholar

    [15]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [16]

    Serpone N, Emeline A V 2012 J. Phys. Chem. Lett. 3 673Google Scholar

    [17]

    Hashimoto K, Irie H, Fujishima A 2005 Jpn. J. Appl. Phys. 44 8269Google Scholar

    [18]

    Schneider J, Matsuoka M, Takeuchi M, Zhang J L, Horiuchi Y, Anpo M, Bahnemann D W 2014 Chem. Rev. 114 9919Google Scholar

    [19]

    Nakata K, Fujishima A 2012 J. Photoch. Photobio. C 13 169Google Scholar

    [20]

    Zhang X M, Chen Y L, Liu R S, Tsai D P 2013 Rep. Prog. Phys. 76 046401Google Scholar

    [21]

    Kale M J, Avanesian T, Christopher P 2014 ACS Catal. 4 116Google Scholar

    [22]

    Liu L Q, Zhang X N, Yang L F, Ren L T, Wang D F, Ye J H 2017 Natl. Sci. Rev. 4 761Google Scholar

    [23]

    Warren S C, Thimsen E 2012 Energ. Environ. Sci. 5 5133Google Scholar

    [24]

    Linic S, Aslam U, Boerigter C, Morabito M 2015 Nat. Mater. 14 567Google Scholar

    [25]

    Erwin W R, Zarick H F, Talbert E M, Bardhan R 2016 Energ. Environ. Sci. 9 1577Google Scholar

    [26]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnol. 10 25Google Scholar

    [27]

    Hartland G V, Besteiro L V, Johns P, Govorov A O 2017 ACS Energy Lett. 2 1641Google Scholar

    [28]

    Foerster B, Joplin A, Kaefer K, Celiksoy S, Link S, Sönnichsen C 2017 ACS Nano 11 2886Google Scholar

    [29]

    Zijlstra P, Paulo P M, Yu K, Xu Q, Orrit M 2012 Angew. Chem. 124 8477Google Scholar

    [30]

    Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar

    [31]

    Clavero C 2014 Nat. Photon. 8 95Google Scholar

    [32]

    Jia C C, Li X X, Xin N, Gong Y, Guan J X, Meng L A, Meng S, Guo X F 2016 Adv. Energy Mater. 6 1600431Google Scholar

    [33]

    Li W, Valentine J G 2017 Nanophotonics 6 177

    [34]

    Li X H, Zhu J M, Wei B Q 2016 Chem. Soc. Rev. 45 3145Google Scholar

    [35]

    Wang M Y, Ye M D, Iocozzia J, Lin C J, Lin Z Q 2016 Adv. Sci. 3 1600024Google Scholar

    [36]

    Ma X C, Dai Y, Yu L, Huang B B 2016 Light Sci. Appl. 5 e16017Google Scholar

    [37]

    DuChene J S, Tagliabue G, Welch A J, Cheng W H, Atwater H A 2018 Nano Lett. 18 2545Google Scholar

    [38]

    Schather A E, Manjavacas A, Lauchner A, Marangoni V S, DeSantis C J, Nordlander P, Halas N J 2017 J. Phys. Chem. Lett. 8 2060Google Scholar

    [39]

    Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155Google Scholar

    [40]

    Ding S J, Yang D J, Li J L, Pan G M, Ma L, Lin Y J, Wang J H, Zhou L, Feng M, Xu H X, Gao S W, Wang Q Q 2017 Nanoscale 9 3188Google Scholar

    [41]

    Zhang Y C, He S, Guo W X, Hu Y, Huang J W, Mulcahy J R, Wei W D 2018 Chem. Rev. 118 2927Google Scholar

    [42]

    Park J Y, Kim S M, Lee H, Nedrygailov I I 2015 Acc. Chem. Res. 48 2475Google Scholar

    [43]

    Zhan C, Chen X J, Yi J, Li J F, Wu D Y, Tian Z Q 2018 Nat. Rev. Chem. 2 216Google Scholar

    [44]

    Xie W, Schlucker S 2015 Nat. Commun. 6 7570Google Scholar

    [45]

    Cortes E, Xie W, Cambiasso J, Jermyn A S, Sundararaman R, Narang P, Schlucker S, Maier S A 2017 Nat. Commun. 8 14880Google Scholar

    [46]

    Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2014 J. Am. Chem. Soc. 136 64Google Scholar

    [47]

    Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P, Halas N J 2013 Nano Lett. 13 240Google Scholar

    [48]

    Huschka R, Zuloaga J, Knight M W, Brown L V, Nordlander P, Halas N J 2011 J. Am. Chem. Soc. 133 12247Google Scholar

    [49]

    Furube A, Hashimoto S 2017 NPG Asia Mater. 9 e454Google Scholar

    [50]

    Wang S Y, Gao Y Y, Miao S, Liu T F, Mu L C, Li R G, Fan F T, Li C 2017 J. Am. Chem. Soc. 139 11771Google Scholar

    [51]

    Zhai Y M, DuChene J S, Wang Y C, Qiu J J, Johnston-Peck A C, You B, Guo W X, DiCiaccio B, Qian K, Zhao E W, Ooi F, Hu D H, Su D, Stach E A, Zhu Z H, Wei W D 2016 Nat. Mater. 15 889Google Scholar

    [52]

    Fang Z Y, Wang Y M, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P, Halas N J 2012 ACS Nano 6 10222Google Scholar

    [53]

    Kang Y M, Najmaei S, Liu Z, Bao Y J, Wang Y M, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z Y 2014 Adv. Mater. 26 6467Google Scholar

    [54]

    Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E 2016 Adv. Colloid Interface Sci. 229 80Google Scholar

    [55]

    Gilroy K D, Ruditskiy A, Peng H C, Qin D, Xia Y N 2016 Chem. Rev. 116 10414Google Scholar

    [56]

    Govorov A O, Zhang H, Demir H V, Gun'ko Y K 2014 Nano Today 9 85Google Scholar

    [57]

    Fofang N T, Grady N K, Fan Z Y, Govorov A O, Halas N J 2011 Nano Lett. 11 1556Google Scholar

    [58]

    Hao Y W, Wang H Y, Jiang Y, Chen Q D, Ueno K, Wang W Q, Misawa H, Sun H B 2011 Angew. Chem. Int. Ed. 50 7824Google Scholar

    [59]

    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C 2013 Nat. Photon. 7 128Google Scholar

    [60]

    Nan F, Zhang Y F, Li X G, Zhang X T, Li H, Zhang X H, Jiang R B, Wang J F, Zhang W, Zhou L, Wang J H, Wang Q Q, Zhang Z Y 2015 Nano Lett. 15 2705Google Scholar

    [61]

    Faucheaux J A, Fu J, Jain P K 2014 J. Phys. Chem. C 118 2710Google Scholar

    [62]

    Torma P, Barnes W L 2015 Rep. Prog. Phys. 78 013901Google Scholar

    [63]

    Li X G, Zhou L, Hao Z H, Wang Q Q 2018 Adv. Opt. Mater. 6 1800275Google Scholar

    [64]

    Yin T T, Jiang L Y, Shen Z X 2018 Chin. Phys. B 27 097803Google Scholar

    [65]

    Nan F, Cheng Z Q, Wang Y L, Zhang Q, Zhou L, Yang Z J, Zhong Y T, Liang S, Xiong Q H, Wang Q Q 2014 Sci. Rep. 4 4839

    [66]

    Ding S J, Nan F, Yang D J, Liu X L, Wang Y L, Zhou L, Hao Z H, Wang Q Q 2015 Sci. Rep. 5 9735Google Scholar

    [67]

    Bellessa J, Bonnand C, Plenet J C, Mugnier J 2004 Phys. Rev. Lett. 93 036404Google Scholar

    [68]

    Dintinger J, Klein S, Bustos F, Barnes W L, Ebbesen T W 2005 Phys. Rev. B 71 035424Google Scholar

    [69]

    Vasa P, Pomraenke R, Schwieger S, Mazur Y I, Kunets V, Srinivasan P, Johnson E, Kihm J E, Kim D S, Runge E, Salamo G, Lienau C 2008 Phys. Rev. Lett. 101 116801Google Scholar

    [70]

    Fofang N T, Park T H, Neumann O, Mirin N A, Nordlander P, Halas N J 2008 Nano Lett. 8 3481Google Scholar

    [71]

    Ni W H, Yang Z, Chen H J, Li L, Wang J F 2008 J. Am. Chem. Soc. 130 6692Google Scholar

    [72]

    Ni W H, Ambjornsson T, Apell S P, Chen H J, Wang J F 2010 Nano Lett. 10 77Google Scholar

    [73]

    Zhang Y F, Yang D J, Wang J H, Wang Y L, Ding S J, Zhou L, Hao Z H, Wang Q Q 2015 Nanoscale 7 8503Google Scholar

    [74]

    DeLacy B G, Miller O D, Hsu C W, Zander Z, Lacey S, Yagloski R, Fountain A W, Valdes E, Anquillare E, Soljacic M, Johnson S G, Joannopoulos J D 2015 Nano Lett. 15 2588Google Scholar

    [75]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281Google Scholar

    [76]

    Wurtz G A, Evans P R, Hendren W, Atkinson R, Dickson W, Pollard R J, Zayats A V, Harrison W, Bower C 2007 Nano Lett. 7 1297Google Scholar

    [77]

    Zheng Y B, Juluri B K, Jensen L L, Ahmed D, Lu M Q, Jensen L, Huang T J 2010 Adv. Mater. 22 3603Google Scholar

    [78]

    Sugawara Y, Kelf T A, Baumberg J J, Abdelsalam M E, Bartlett P N 2006 Phys. Rev. Lett. 97 266808Google Scholar

    [79]

    Liu W J, Lee B, Naylor C H, Ee H S, Park J, Johnson A T C, Agarwal R 2016 Nano Lett. 16 1262Google Scholar

    [80]

    Lee B, Liu W J, Naylor C H, Park J, Malek S C, Berger J S, Johnson A T C, Agarwal R 2017 Nano Lett. 17 4541Google Scholar

    [81]

    Wang S J, Li S L, Chervy T, Shalabney A, Azzini S, Orgiu E, Hutchison J A, Genet C, Samori P, Ebbesen T W 2016 Nano Lett. 16 4368Google Scholar

    [82]

    Cuadra J, Baranov D G, Wersall M, Verre R, Antosiewicz T J, Shegai T 2018 Nano Lett. 18 1777Google Scholar

    [83]

    Zheng D, Zhang S P, Deng Q, Kang M, Nordlander P, Xu H X 2017 Nano Lett. 17 3809Google Scholar

    [84]

    Lawrie B J, Kim K W, Norton D P, Haglund R F 2012 Nano Lett. 12 6152Google Scholar

    [85]

    Wang H, Ke Y L, Xu N S, Zhan R Z, Zheng Z B, Wen J X, Yan J H, Liu P, Chen J, She J C, Zhang Y, Liu F, Chen H J, Deng S Z 2016 Nano Lett. 16 6886Google Scholar

    [86]

    Ding S J, Li X G, Nan F, Zhong Y T, Zhou L, Xiao X D, Wang Q Q, Zhang Z Y 2017 Phys. Rev. Lett. 119 177401Google Scholar

    [87]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [88]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823Google Scholar

    [89]

    Nan F, Ding S J, Ma L, Cheng Z Q, Zhong Y T, Zhang Y F, Qiu Y H, Li X G, Zhou L, Wang Q Q 2016 Nanoscale 8 15071Google Scholar

    [90]

    Cushing S K, Li J T, Bright J, Yost B T, Zheng P, Bristow A D, Wu N Q 2015 J. Phys. Chem. C 119 16239Google Scholar

    [91]

    Li J T, Cushing S K, Zheng P, Meng F K, Chu D, Wu N Q 2013 Nat. Commun. 4 2651Google Scholar

    [92]

    Wu N Q 2018 Nanoscale 10 2679Google Scholar

    [93]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [94]

    Wadell C, Antosiewicz T J, Langhammer C 2012 Nano Lett. 12 4784Google Scholar

    [95]

    Swearer D F, Zhao H Q, Zhou L N, Zhang C, Robatjazi H, Martirez J M P, Krauter C M, Yazdi S, McClain M J, Ringe E, Carter E A, Nordlander P, Halas N J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 8916Google Scholar

    [96]

    Zhang C, Zhao H Q, Zhou L A, Schlather A E, Dong L L, McClain M J, Swearer D F, Nordlander P, Halas N J 2016 Nano Lett. 16 6677Google Scholar

    [97]

    Li K, Hogan N J, Kale M J, Halas N J, Nordlander P, Christopher P 2017 Nano Lett. 17 3710Google Scholar

    [98]

    Robatjazi H, Zhao H Q, Swearer D F, Hogan N J, Zhou L N, Alabastri A, McClain M J, Nordlander P, Halas N J 2017 Nat. Commun. 8 27Google Scholar

    [99]

    Chen K, Ding S J, Luo Z J, Pan G M, Wang J H, Liu J, Zhou L, Wang Q Q 2018 Nanoscale 10 4130Google Scholar

    [100]

    Mubeen S, Lee J, Singh N, Kramer S, Stucky G D, Moskovits M 2013 Nat. Nanotechnol. 8 247Google Scholar

    [101]

    Cushing S K 2017 Nat. Photon. 11 748Google Scholar

    [102]

    Petek H 2012 J. Chem. Phys. 137 091704Google Scholar

    [103]

    Narang P, Sundararaman R, Atwater H A 2016 Nanophotonics 5 96

    [104]

    Sundararaman R, Narang P, Jermyn A S, Goddard W A, Atwater H A 2014 Nat. Commun. 5 5788Google Scholar

    [105]

    Manjavacas A, Liu J G, Kulkarni V, Nordlander P 2014 ACS Nano 8 7630Google Scholar

    [106]

    Govorov A O, Zhang H 2015 J. Phys. Chem. C 119 6181Google Scholar

    [107]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957Google Scholar

    [108]

    Besteiro L V, Kong X T, Wang Z M, Hartland G, Govorov A O 2017 ACS Photon. 4 2759Google Scholar

    [109]

    Dal Forno S, Ranno L, Lischner J 2018 J. Phys. Chem. C 122 8517Google Scholar

    [110]

    Liu L Q, Ouyang S X, Ye J H 2013 Angew. Chem. Int. Ed. 52 6689Google Scholar

    [111]

    Ma L, Liang S, Liu X L, Yang D J, Zhou L, Wang Q Q 2015 Adv. Funct. Mater. 25 898Google Scholar

    [112]

    Naya S, Kume T, Akashi R, Fujishima M, Tada H 2018 J. Am. Chem. Soc. 140 1251Google Scholar

    [113]

    Wang J H, Chen M, Luo Z J, Ma L, Zhang Y F, Chen K, Zhou L, Wang Q Q 2016 J. Phys. Chem. C 120 14805Google Scholar

    [114]

    Ma L, Yang D J, Luo Z J, Chen K, Xie Y, Zhou L, Wang Q Q 2016 J. Phys. Chem. C 120 26996Google Scholar

    [115]

    Li J T, Cushing S K, Zheng P, Senty T, Meng F K, Bristow A D, Manivannan A, Wu N Q 2014 J. Am. Chem. Soc. 136 8438Google Scholar

    [116]

    Ma L, Chen K, Nan F, Wang J H, Yang D J, Zhou L, Wang Q Q 2016 Adv. Funct. Mater. 26 6076Google Scholar

    [117]

    Ma S, Chen K, Qiu Y H, Gong L L, Pan G M, Lin Y J, Hao Z H, Zhou L, Wang Q Q 2019 J. Mater. Chem. A 7 3408Google Scholar

    [118]

    Chen K, Ma L, Wang J H, Cheng Z Q, Yang D J, Li Y Y, Ding S J, Zhou L, Wang Q Q 2017 RSC Adv. 7 26097Google Scholar

    [119]

    Li Y Y, Wang J H, Luo Z J, Chen K, Cheng Z Q, Ma L, Ding S J, Zhou L, Wang Q Q 2017 Sci. Rep. 7 7178Google Scholar

    [120]

    Liu J, Chen K, Pan G M, Luo Z J, Xie Y, Li Y Y, Lin Y J, Hao Z H, Zhou L, Ding S J, Wang Q Q 2018 Nanoscale 10 19586Google Scholar

    [121]

    Zheng B Y, Zhao H Q, Manjavacas A, McClain M, Nordlander P, Halas N J 2015 Nat. Commun. 6 7797Google Scholar

    [122]

    Mubeen S, Hernandez-Sosa G, Moses D, Lee J, Moskovits M 2011 Nano Lett. 11 5548Google Scholar

    [123]

    de Arquer F P G, Mihi A, Kufer D, Konstantatos G 2013 ACS Nano 7 3581Google Scholar

    [124]

    Shiraishi Y, Yasumoto N, Imai J, Sakamoto H, Tanaka S, Ichikawa S, Ohtani B, Hirai T 2017 Nanoscale 9 8349Google Scholar

    [125]

    Wang F, Li C H, Chen H J, Jiang R B, Sun L D, Li Q, Wang J F, Yu J C, Yan C H 2013 J. Am. Chem. Soc. 135 5588Google Scholar

    [126]

    Zheng Z K, Tachikawa T, Majima T 2014 J. Am. Chem. Soc. 136 6870Google Scholar

    [127]

    Zheng Z K, Tachikawa T, Majima T 2015 J. Am. Chem. Soc. 137 948Google Scholar

    [128]

    Aslam U, Chavez S, Linic S 2017 Nat. Nanotechnol. 12 1000Google Scholar

    [129]

    Rao V G, Aslam U, Linic S 2019 J. Am. Chem. Soc. 141 643Google Scholar

    [130]

    Chavez S, Aslam U, Linic S 2018 ACS Energy Lett. 3 1590Google Scholar

    [131]

    Christopher P, Xin H L, Linic S 2011 Nat. Chem. 3 467Google Scholar

    [132]

    Christopher P, Xin H L, Marimuthu A, Linic S 2012 Nat. Mater. 11 1044Google Scholar

    [133]

    Zhou L A, Swearer D F, Zhang C, Robatjazi H, Zhao H Q, Henderson L, Dong L L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [134]

    Wu K, Chen J, McBride J R, Lian T 2015 Science 349 632Google Scholar

    [135]

    Boerigter C, Campana R, Morabito M, Linic S 2016 Nat. Commun. 7 10545Google Scholar

    [136]

    Boerigter C, Aslam U, Linic S 2016 ACS Nano 10 6108Google Scholar

    [137]

    Kale M J, Avanesian T, Xin H L, Yan J, Christopher P 2014 Nano Lett. 14 5405Google Scholar

  • [1] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, 2022, 71(17): 177101. doi: 10.7498/aps.71.20220601
    [2] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [3] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望. 物理学报, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [4] 刘航, 于永吉, 王宇恒, 刘贺言, 李渌洁, 金光勇. 基于含时分步积分算法反演单体MgO:APLN多光参量振荡能量场. 物理学报, 2019, 68(24): 244202. doi: 10.7498/aps.68.20190843
    [5] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [6] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [7] 邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛. 三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究. 物理学报, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [8] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [9] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [10] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [11] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 物理学报, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [12] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [13] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 物理学报, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [14] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [15] 赵娟, 胡慧芳, 曾亚萍, 程彩萍. 花状硫化铜级次纳米结构的制备及可见光催化活性研究. 物理学报, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [16] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [17] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [18] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性. 物理学报, 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [19] 宁 成, 杨震华, 丁 宁. Z箍缩内爆过程中的能量转换机制研究. 物理学报, 2003, 52(2): 415-420. doi: 10.7498/aps.52.415
    [20] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理. 物理学报, 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
计量
  • 文章访问数:  20681
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-28
  • 修回日期:  2019-04-16
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回