搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于温度的亚稳态氧化石墨烯性能

莫佳伟 裘银伟 伊若冰 吴俊 王志坤 赵丽华

引用本文:
Citation:

基于温度的亚稳态氧化石墨烯性能

莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华

Temperature-dependent properties of metastable graphene oxide

Mo Jia-Wei, Qiu Yin-Wei, Yi Ruo-Bing, Wu Jun, Wang Zhi-Kun, Zhao Li-Hua
PDF
HTML
导出引用
  • 单片层氧化石墨烯由于其优异的物理化学性能, 在离子和分子筛选、水脱盐和净化、气体分离、生物传感、质子导体、锂电池和超级电容等领域有巨大的潜在应用. 然而普遍采用的Hummers法等化学、物理方法制备的氧化石墨烯是一种亚稳态材料. 其最终形态的物理化学性能的转变与调控至关重要, 亟需系统研究. 本文采用恒温处理方法对氧化石墨烯亚稳态的转变进行调控, 利用X射线光电子吸收谱、傅里叶红外吸收谱、扫描电子显微镜等方法检测氧化石墨烯含氧基团的含量、类型和形貌与温度的变化关系, 并利用Zeta电位、紫外吸收谱、拉力测试分析温度对氧化石墨烯在转变过程中的溶液悬浮稳定性、光子能带、拉伸强度等性能的影响. 所得定量测试结果发现, 氧化石墨烯亚稳态的转变过程中存在环氧减少、羟基增加, 以及整体含氧量下降的现象, 而在此过程中氧化石墨烯的单片层形貌并无明显变化. 但是这种结构的转变使得悬浮液黏稠度和亲水性大幅度增强, 能带减小和拉伸强度增强效应明显. 而当转变过程足够长时, 氧化石墨烯的亲水性转而下降, 并出现沉淀现象, 表明羟基之间进一步发生了脱水转变. 另外, 本文还分析了恒温处理的时间、悬浮液的浓度对这种转变过程的影响. 相关研究结果有利于理解亚稳态氧化石墨烯悬浮液随温度变化的性能转变, 对氧化石墨烯具体应用有一定参考价值.
    Monolayer of graphene oxide has great potential applications in ion and molecular screening, desalination and purification of water, gas separation, biosensing, proton conductors, lithium batteries, super capacitors and other fields, due to its excellent physical and chemical properties. However, the graphene oxide prepared by chemical and physical methods, such as the commonly used Hummers method is a metastable material. The transformation and regulation of the physical and chemical properties of the final morphology are essential, and systematic research is urgently needed. In this paper, the thermostat treatment method is used to control the metastable transformation of graphene oxide. The relationship of content, type, and morphology with temperature of oxygen-containing graphene oxide are detected by X-ray photoelectron absorption spectroscopy, Fourier infrared absorption spectroscopy, scanning electron microscope, etc.; and the effects of temperature on the stability of solution suspension stability, photon energy band and tensile strength of graphene oxide in the transformation process are analyzed by using Zeta potential, ultraviolet absorption spectrum, tensile force. The quantitative test results show that there exists a phenomenon in which the epoxy phase decreases, the hydroxyl group increases and the overall oxygen content decreases in the metastable transition process of graphene oxide, and the monolayer morphology of graphene oxide does not change significantly in this process. This structural transformation, however, greatly enhances the viscosity and hydrophilicity of the suspension, and remarkably reduces the energy band and considerably raises the tensile strength enhancement effect. When the transformation process is long enough, the hydrophilicity of the graphene oxide will decrease and precipitate. It is indicated that a further dehydration transition occurs between the hydroxyl groups. In addition, in the paper we also analyze the effect of constant temperature treatment time and concentration of suspension on this transformation process. The relevant research results are helpful in understanding the performance change of metastable graphene oxide suspension with temperature, and have certain reference value for the specific application of graphene oxide.
      通信作者: 赵丽华, lhzhao8160@126.com
    • 基金项目: 国家自然科学基金 (批准号: U1832150)和国家级大学生创新创业训练计划(批准号: 110-2013200055) 资助的课题.
      Corresponding author: Zhao Li-Hua, lhzhao8160@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1832150) and the National College Students Innovation and Entrepreneurship Training Program of China (Grant No. 110-2013200055).
    [1]

    McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A 2007 Chem. Mater. 19 4396Google Scholar

    [2]

    刘学文, 朱重阳, 董辉, 徐峰, 孙立涛 2016 物理学报 65 118802Google Scholar

    Liu X W, Zhu C Y, Dong H, Xu F, Sun L T 2016 Acta Phys. Sin. 65 118802Google Scholar

    [3]

    林文强, 徐斌, 陈亮, 周峰, 陈均朗 2016 物理学报 65 133102Google Scholar

    Lin W Q, Xu B, Chen L, Zhou F, Chen J L 2016 Acta Phys. Sin. 65 133102Google Scholar

    [4]

    Li J, Lu C H, Yao Q H, Zhang X L, Liu J J, Yang H H, Chen G N 2011 Biosens. Bioelectron. 26 3894Google Scholar

    [5]

    Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M 2009 Adv. Funct. Mater. 19 2577Google Scholar

    [6]

    Peper S, Telting-Diaz M, Almond P, Albrecht-Schmitt T, Bakker E 2002 Anal. Chem. 74 1327Google Scholar

    [7]

    Liu G, Jin W, Xu N 2016 Angew. Chem. Int. Ed. 55 13384Google Scholar

    [8]

    Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R 2014 Science 343 752Google Scholar

    [9]

    Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H 2017 Nature 550 380Google Scholar

    [10]

    Pei S, Cheng H M 2012 Carbon 50 3210Google Scholar

    [11]

    Yang J, Shi G, Tu Y, Fang H 2014 Angew. Chem. Int. Ed. 53 10190Google Scholar

    [12]

    Kim S, Zhou S, Hu Y, Acik M, Chabal Y J, Berger C, de Heer W, Bongiorno A, Riedo E 2012 Nat. Mater. 11 544Google Scholar

    [13]

    Qian Z, Chen L, Li D Y, Peng B Q, Shi G S, Xu G, Fang H P, Wu M H 2017 Chin. Phys. B 2 6

    [14]

    Eigler S, Hirsch A 2014 Angew. Chem. Int. Ed. 53 7720Google Scholar

    [15]

    陈浩, 彭同江, 刘波, 孙红娟, 雷德会 2017 物理学报 66 080701Google Scholar

    Chen H, Peng T J, Liu B, Sun H J, Lei D H 2017 Acta Phys. Sin. 66 080701Google Scholar

    [16]

    Chen D, Feng H, Li J 2012 Chem. Rev. 112 6027Google Scholar

    [17]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [18]

    Neklyudov V V, Khafizov N R, Sedov I A, Dimiev A M 2017 Phys. Chem. Chem. Phys. 19 17000Google Scholar

    [19]

    Shulga Y M, Martynenko V M, Muradyan V E, Baskakov S A, Smirnov V A, Gutsev G L 2010 Chem. Phys. Lett. 498 287Google Scholar

    [20]

    Li J, Xiao G, Chen C, Li R, Yan D 2013 J. Mater. Chem. A 1 1481Google Scholar

    [21]

    Serpone N, Lawless D, Khairutdinov R 1995 J. Phys. Chem. 99 16646Google Scholar

  • 图 1  氧化石墨烯悬浮液在不同温度热处理后的状态和基团变化 (a)不同温度处理后的溶液状态; (b) XPS检测的C, O元素的原子数含量百分比; (c) C 1s精细谱及分峰拟合; (d)各基团的原子数含量百分比

    Fig. 1.  State and changing of group of the graphene oxide suspension after heat treatment at different temperatures: (a) Solution state after different temperature treatment; (b) percentage of atomic content of C and O elements detected by XPS; (c) C 1s XPS spectra and peak fitting; (d) percentage of atomic content of each group.

    图 2  不同温度热处理后的形貌、红外光谱以及悬浮稳定性表征 (a) SEM图像, 三种温度处理后的氧化石墨烯单片层形貌; (b)多个平行样的红外吸收光谱; (c)三种温度处理后的氧化石墨烯悬浮液的Zeta电位

    Fig. 2.  Morphology, FT-IR spectra and suspension stability characterization after heat treatment at different temperatures: (a) SEM images, namely, the morphology of monolayer of graphene oxide after three temperature treatments; (b) FT-IR spectra of multiple parallel samples; (c) Zeta potential basic of graphene oxide after three temperature treatments.

    图 3  化石墨烯在不同温度热处理后的性能变化 (a)紫外吸收光谱; (b)光子带隙; (c)应力-应变曲线, 虚线部分表示断裂位置; (d)拉伸强度

    Fig. 3.  Performance change of graphene oxide after heat treatment at different temperatures: (a) UV-vis spectra; (b) photonic band; (c) stress-strain curve; (d) tensile strength.

    图 4  氧化石墨烯悬浮液在70 ℃热处理不同时间的性能变化 (a)不同时间(1, 3, 5, 10, 15 d)热处理的氧化石墨烯悬浮液, 分别滴涂制备的充分干燥的氧化石墨烯膜; (b)紫外吸收光谱; (c)光子带隙

    Fig. 4.  Performance change of graphene oxide at 70 ℃ heat treatment for different time: (a) Dried graphene oxide film separately prepared by drop coating after graphene oxide heat treatment for different time (1, 3, 5, 10, 15 d); (b) UV-vis spectra; (c) photonic band.

    图 5  不同浓度的氧化石墨烯在70 ℃热处理的性能差异 (a)热处理前; (b)热处理后的氧化石墨烯悬浮液对比; (c)紫外吸收光谱; (d)光子带隙

    Fig. 5.  Performance change of graphene oxide at 70 ℃ heat treatment for different concentrations: The image of graphene oxide suspension (a) before and (b) after heat treatment; (c) UV-vis spectra; (d) photonic band gap.

  • [1]

    McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A 2007 Chem. Mater. 19 4396Google Scholar

    [2]

    刘学文, 朱重阳, 董辉, 徐峰, 孙立涛 2016 物理学报 65 118802Google Scholar

    Liu X W, Zhu C Y, Dong H, Xu F, Sun L T 2016 Acta Phys. Sin. 65 118802Google Scholar

    [3]

    林文强, 徐斌, 陈亮, 周峰, 陈均朗 2016 物理学报 65 133102Google Scholar

    Lin W Q, Xu B, Chen L, Zhou F, Chen J L 2016 Acta Phys. Sin. 65 133102Google Scholar

    [4]

    Li J, Lu C H, Yao Q H, Zhang X L, Liu J J, Yang H H, Chen G N 2011 Biosens. Bioelectron. 26 3894Google Scholar

    [5]

    Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M 2009 Adv. Funct. Mater. 19 2577Google Scholar

    [6]

    Peper S, Telting-Diaz M, Almond P, Albrecht-Schmitt T, Bakker E 2002 Anal. Chem. 74 1327Google Scholar

    [7]

    Liu G, Jin W, Xu N 2016 Angew. Chem. Int. Ed. 55 13384Google Scholar

    [8]

    Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R 2014 Science 343 752Google Scholar

    [9]

    Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H 2017 Nature 550 380Google Scholar

    [10]

    Pei S, Cheng H M 2012 Carbon 50 3210Google Scholar

    [11]

    Yang J, Shi G, Tu Y, Fang H 2014 Angew. Chem. Int. Ed. 53 10190Google Scholar

    [12]

    Kim S, Zhou S, Hu Y, Acik M, Chabal Y J, Berger C, de Heer W, Bongiorno A, Riedo E 2012 Nat. Mater. 11 544Google Scholar

    [13]

    Qian Z, Chen L, Li D Y, Peng B Q, Shi G S, Xu G, Fang H P, Wu M H 2017 Chin. Phys. B 2 6

    [14]

    Eigler S, Hirsch A 2014 Angew. Chem. Int. Ed. 53 7720Google Scholar

    [15]

    陈浩, 彭同江, 刘波, 孙红娟, 雷德会 2017 物理学报 66 080701Google Scholar

    Chen H, Peng T J, Liu B, Sun H J, Lei D H 2017 Acta Phys. Sin. 66 080701Google Scholar

    [16]

    Chen D, Feng H, Li J 2012 Chem. Rev. 112 6027Google Scholar

    [17]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [18]

    Neklyudov V V, Khafizov N R, Sedov I A, Dimiev A M 2017 Phys. Chem. Chem. Phys. 19 17000Google Scholar

    [19]

    Shulga Y M, Martynenko V M, Muradyan V E, Baskakov S A, Smirnov V A, Gutsev G L 2010 Chem. Phys. Lett. 498 287Google Scholar

    [20]

    Li J, Xiao G, Chen C, Li R, Yan D 2013 J. Mater. Chem. A 1 1481Google Scholar

    [21]

    Serpone N, Lawless D, Khairutdinov R 1995 J. Phys. Chem. 99 16646Google Scholar

  • [1] 马莉莉, 张世平, 张芳军, 李麦娟, 蒋军, 丁晓彬, 颉录有, 张登红, 董晨钟. W6+离子的电子碰撞电离研究. 物理学报, 2024, 73(12): 123401. doi: 10.7498/aps.73.20240408
    [2] 李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮. 氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感. 物理学报, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [3] 陆海林, 段芳莉. 硅基材料界面石墨烯片层运动行为及其摩擦特性. 物理学报, 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [4] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [5] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [6] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [7] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [8] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [9] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [10] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [11] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [12] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [13] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [14] 敬明, 邓卫, 王昊, 季彦婕. 基于跟车行为的双车道交通流元胞自动机模型. 物理学报, 2012, 61(24): 244502. doi: 10.7498/aps.61.244502
    [15] 郑亮, 马寿峰, 贾宁. 基于驾驶员行为的元胞自动机模型研究. 物理学报, 2010, 59(7): 4490-4498. doi: 10.7498/aps.59.4490
    [16] 陈时东, 朱留华, 孔令江, 刘慕仁. 优先随机慢化及预测间距对交通流的影响. 物理学报, 2007, 56(5): 2517-2522. doi: 10.7498/aps.56.2517
    [17] 乔秀梅, 张国平, 张覃鑫. 模拟卢瑟福实验室的实验以检验理论模拟. 物理学报, 2006, 55(3): 1181-1185. doi: 10.7498/aps.55.1181
    [18] 王光军, 王 芳, 沈保根. LaFe11.4Al1.6中铁磁相与反铁磁相的双相共存. 物理学报, 2005, 54(3): 1410-1414. doi: 10.7498/aps.54.1410
    [19] 邝 华, 孔令江, 刘慕仁. 考虑延迟概率因素对混合车辆敏感驾驶交通流模型的研究. 物理学报, 2004, 53(12): 4138-4144. doi: 10.7498/aps.53.4138
    [20] 雷 丽, 薛 郁, 戴世强. 交通流的一维元胞自动机敏感驾驶模型. 物理学报, 2003, 52(9): 2121-2126. doi: 10.7498/aps.52.2121
计量
  • 文章访问数:  9882
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 修回日期:  2019-05-26
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回