搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型忆阻器神经形态电路的设计及其在条件反射行为中的应用

徐威 王钰琪 李岳峰 高斐 张缪城 连晓娟 万相 肖建 童祎

引用本文:
Citation:

新型忆阻器神经形态电路的设计及其在条件反射行为中的应用

徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎

Design of novel memristor-based neuromorphic circuit and its application in classical conditioning

Xu Wei, Wang Yu-Qi, Li Yue-Feng, Gao Fei, Zhang Miao-Cheng, Lian Xiao-Juan, Wan Xiang, Xiao Jian, Tong Yi
PDF
HTML
导出引用
  • 突触是生物神经系统的重要组成部分. 忆阻器因具备连续可调的非线性电导, 与连接强度可连续调节的生物突触极为相似, 因此在构建人工突触及类脑系统方面引起了广泛研究. 本文制备了Cu/MXene/SiO2/W结构的忆阻器, 基于该器件的电学特性、尤其是电导的连续可调特性, 构建人工突触单元并设计了神经形态电路. 在该电路中, 通过施加连续的电压脉冲, 对人工突触单元进行训练, 成功模仿实现了经典条件反射行为. 这一工作将对未来基于忆阻器构建大规模神经形态系统以进行类脑智能运算具有重要的意义.
    Inspired by the working mechanism of human brain, the artificial neural network attracts great interest for its capability of parallel processing, which is favored by big data task. However, the electronic synapse based on CMOS neural network needs at least ten transistors to realize one biological synaptic function. So, CMOS-based neural network exhibits obvious weakness in speed, power consumption, circuit area and resource utilization and so on, compared with biological synapses. Therefore, how to build neuromorphic circuits and realize biological functions by constructing electronic synapses with low power consumption and high integration density have become the key points for human to realize brain-like computing system. Memristors, as the fourth basic component, is a two-terminal nonlinear device possessing nonlinear conductance that can be tuned continuously. For that special characteristic, it is very similar to biological synapse whose connection strength can be adjusted continuously. In this article, first of all, we study the electrical characteristic of the Cu/MXene/SiO2/W memristor. When applying a positive DC sweeping voltage to the Cu electrode, the Cu electrode is oxidized, generating Cu2+. The generated Cu2+ in function layer tends tomove towards the bottom electrode under the action of electric field. Near the bottom electrode the Cu2+ moving from top electrode are reduced, generating a conductive Cu atom. With Cu atoms accumulating and extending from bottom electrode to top electrode, the memristor is gradually converted from the initial high resistance state (HRS) into the low resistance state (LRS). Secondly, combining with HP model of memristor, we utilize Verilog A language to simulate memristor in the experiment we conducted. Subsequently, we successfully construct the artificial synaptic unit and design the weight differential circuit with self-feedback branch. In the above circuit, we successfully implementa classical " Pavlov's dog” experiment. By applying the sinusoidal signal and pulse signal to the synaptic unit for testing and training it, respectively, the circuit realizes the convention between the conditions that unconditioned stimulus producing unconditioned response to conditioned stimulus producing conditions response. This work takes memristor as a center, through modelling the electrical characteristic of Cu/MXene/ SiO2/W device, we construct a neuromorphic circuit with weight differential branch andself-feedback branch, successfully simulate the classical learning behavior of biological synapses, and realizes the whole process of biologically conditioned reflex, which is illustrated in detail in the experiment on " Pavlov′s dog”. The results will provide effective guidance forconstructing a large scale and high density neuromorphic circuitbased on memristor, thus promoting the realization of brain-like computation in the future.
      通信作者: 肖建, xiaoj@njupt.edu.cn ; 童祎, tongyi@njupt.edu.cn
    • 基金项目: 江苏省特聘教授和南京邮电大学科研基金(批准号: SZDG20180007, NY217116, KFJJ20170101, NY219014, NY218110)、中国博士后科学基金(批准号: 2018M642290)、国家自然青年科学基金 (批准号: 61804079)、江苏省高等学校自然科学研究面上项目(批准号: 18KJD510005)、双创博士项目(批准号: CZ1060619001)和江苏省研究生创新计划(批准号: SJCX19_0256, SJKY19_0811, SJKY19_0806) 资助的课题
      Corresponding author: Xiao Jian, xiaoj@njupt.edu.cn ; Tong Yi, tongyi@njupt.edu.cn
    • Funds: Project supported by the Jiangsu Specially-Appointed Professor and the Science Research Funds for Nanjing University of Posts and Telecommunications, China (Grant Nos. SZDG20180007, NY217116, KFJJ20170101, NY219014, NY218110), the China Postdoctoral Science Foundation (Grant No. 2018M642290), the National Natural Science Foundation of China (Grant No. 61804079), the University Natural Science Foundation of Jiangsu Province, China (Grant No.18KJD510005), the Innovative Doctor Program, China (Grant Nos. CZ1060619001), and the Graduate Research and Innovation Projects of Jiangsu Province, China (Grant Nos. SJCX19_0256, SJKY19_0811, SJKY19_0806)
    [1]

    Backus J 1978 Commun. ACM 21 513

    [2]

    Wang J, Zhuge F 2019 Adv. Mater. Technol. 4 1800544Google Scholar

    [3]

    Murre J M, Sturdy D P 1995 Biol. Cybern. 73 529Google Scholar

    [4]

    Braitenberg V, Schuz A A 1991 J. Anat. 179 203

    [5]

    Sporns O, Tononi G, Kötter R 2005 PLoS Comput. Biol. 1 42Google Scholar

    [6]

    Hebb D O 1949 Am. J. Psychol. 63 633

    [7]

    Wixted J T, Ebbesen E B 1991 Psychol. Sci. 2 409Google Scholar

    [8]

    Douglas R, Mahowald M, Mead C 1995 Annu. Rev. Neurosci. 18 255Google Scholar

    [9]

    Jürgen S 2015 Neural Networks 61 85Google Scholar

    [10]

    Dean J, Corrado G S, Monga R, Chen K, Devin M, Le Q V, Mao M Z, Ranzato M A, Senior A, Tucker P, Yang K, Ng A Y 2012 Advances in Neural Information Processing Systems Harrahs and Harveys, Lake Tahoe, December 3–8, 2012 p1232

    [11]

    Rachmuth G, Poon C S 2008 Hfsp Journal 2 156Google Scholar

    [12]

    Liu Y H, Zhu L Q, Feng P, Shi Y, Wan Q 2015 Adv. Mater. 27 5599Google Scholar

    [13]

    Lont J B, Guggenbuhl W 1992 IEEE Trans. Neural Networks 3 457Google Scholar

    [14]

    Dmitri B S, Gregory S S, Duncan R S, Williams R S 2008 Nature 453 80Google Scholar

    [15]

    Jeong H, Shi L P 2019 J. Phys. D: Appl. Phys. 52 023003Google Scholar

    [16]

    Waser R, Aono M 2007 Nat. Mater. 6 833Google Scholar

    [17]

    Hirose Y, Hirose H 1976 J. Appl. Phys. 47 2767Google Scholar

    [18]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [19]

    Hui Q H, Zhao L, Wang X P 2019 Neurocomputing 330 11Google Scholar

    [20]

    Daniele I 2016 Semicond. Sci. Technol. 31 063002Google Scholar

    [21]

    Wu L, Liu H X, Li J B, Wang S L, Wang X 2019 Nanoscale Res. Lett. 14 184Google Scholar

    [22]

    Gurme S T, Dongale T D, Surwase S N, Kumbhar S D, More G M, Pati V L, Patil P S, Kamat R K, Jadhav J P 2018 Phys. Status Solidi. 215 1800550Google Scholar

    [23]

    Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J, Barsoum M W Gogotsi Y 2014 PNAS 111 16676Google Scholar

    [24]

    Lei J C, Zhang X, Zhou Z, Lei J C, Zhang X, Zhou Z 2015 Front. Phys. Beijing 10 276Google Scholar

    [25]

    Yan X B, Wang K Y, Zhao J H, Zhou Z Y, Wang H, Wang J J, Zhang L, Li X Y, Xiao Z A, Zhao Q L, Pei Y F, Wang G, Qin C Y, Li H, Lou J Z, Liu Q, Zhou P 2019 Small 15 1900107Google Scholar

    [26]

    Li D, Wu B, Zhu X, Wang J, Ryu B, Lu W D, Lu W, Liang X 2018 ACS Nano 12 9240Google Scholar

    [27]

    Zhou L, Yang S W, Ding G Q, Yang J Q, Ren Y, Zhang S R, Mao J Y, Yang Y C, Zhou Y, Han S T 2019 Nano Energy 58 293Google Scholar

    [28]

    Radtke P K, Schimansky G L 2016 AIP Adv. 6 055119Google Scholar

    [29]

    Dickinson A 1981 Br. Med. Bull. 37 165Google Scholar

    [30]

    Zhang M C, Wang Y Q, Gao F, Wang Y, Shen X Y, He N, Zhu J L, Chen Y H, Wan X, Lian X J, Hu E T, Xu J G, Tong Y 2019 Ceram. Int. 45 19467Google Scholar

    [31]

    陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建 2019 物理学报 68 098501Google Scholar

    Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar

    [32]

    McAndrew C C, Coram G J, Gullapalli K K, Jones J B, Nagel L W, Roy A S, Roychowdhury J, Scholten A J, Smit G D J, Wang X, Yoshitomi S 2017 IEEE J. Electron Dev. 3 383

    [33]

    Messaris I, Serb A, Stathopoulos S, Khiat A, Nikolaidis S, Prodromakis T 2018 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37 3151Google Scholar

    [34]

    McDonald N R, Pino R E, Rozwood P J, Wysocki B T 2010 IEEE International Joint Conference on Neural Networks Barcelona, Spain, July 18–23, 2010 p1

    [35]

    Dongale T D, Patil P J, Desai N K, Chougule P P, Kumbhar S M, Waifalkar P P, Patil P B, Vhatkar R S, Takale M V, Gaikwad P K, Kamat R K 2016 Nano Convergence 3 16Google Scholar

    [36]

    Hu X, Feng G, Duan S, Liu L 2016 IEEE T. Neur. Net. Lear. 28 1889

    [37]

    Zhao J, Zhou Z, Zhang Y, Wang J, Zhang L, Li X, Zhao M, Wang H, Pei Y, Zhao Q, Xiao Z, Wang K, Qin C, Wang G, Li H, Ding B, Yan F, Wang K, Ren D, Liu B, Yan X 2019 J. Mater. Chem. C 7 1298Google Scholar

    [38]

    Pan Y, Wan T, Du H, Qu B, Wang D, Ha T J, Chu D 2018 J. Alloys Compd. 757 496Google Scholar

    [39]

    Hong X L, Loy J J, Dananjaya P A, Tan F, Ng C M, Lew W S 2018 J. Mater. Sci. 53 8720Google Scholar

    [40]

    Wan X, Liang D K, Gao Fei, Lian X J, Tong Y 2018 Appl. Phys. Express 11 114601Google Scholar

    [41]

    Yakopcic C, Tarek T M 2018 International Joint Conference on Neural Networks Rio de Janeiro, Brazil, July 8–13, 2018 p8489252

  • 图 1  (a) Cu/MXene/SiO2/W忆阻器结构及电学测试示意图; (b)二维材料MXene的扫描电镜图; (b) 金相显微镜下忆阻器表面结构; (d)正向偏压下器件工作机理示意图; (e)受到刺激信号, 突触前膜、突触后膜之间神经递质迁移示意图

    Fig. 1.  (a) The device structure and measurement of Cu/MXene/SiO2/W memristor; (b) surface structure of memristor under metallographic microscope; (c) the scanning electron microscope result of two-dimensional material MXene; (d) the physical mechanism of the Cu/MXene/SiO2/W memristor under positive voltagestimulus; (e) the neurotransmitter transfer between pre- and postsynaptic membrane after stimulus.

    图 2  (a)惠普研究小组提出的忆阻器模型; (b)忆阻器模型仿真数据与实验测试数据拟合

    Fig. 2.  (a) Memristor model reported by HP group; (b) the fitting of experimental data and the simulation data.

    图 3  实现条件反射的神经形态电路

    Fig. 3.  Neuromorphic circuitry for the emulation of classical conditioning.

    图 4  (a)仿真过程施加的信号以及各自对应的结果图; (b)对电路中忆阻器模型进行直流电压扫描, 流经忆阻器的电流随仿真时间的变化; (c)训练过程中, 流经忆阻器Ma的电流随时间的变化

    Fig. 4.  (a) The signals inputted into the circuit and corresponding output waveform, respectively; (b) the change of current flowing through the memristor against timeduring DC voltage sweeping; (c) the change of current through the memristor Ma during training process.

    表 1  模型主要参数

    Table 1.  Key modeling parameters.

    开启电阻截止电阻有源区长度离子迁移率 窗函数参数
    ${R_{{\rm{on}}}}/\Omega $${R_{{\rm{off}}}}/\Omega $D/muv x0 y0pm
    3.7 × 1021.9 × 1043.0 × 10–83.0 × 10–13 0.30.730100
    下载: 导出CSV
  • [1]

    Backus J 1978 Commun. ACM 21 513

    [2]

    Wang J, Zhuge F 2019 Adv. Mater. Technol. 4 1800544Google Scholar

    [3]

    Murre J M, Sturdy D P 1995 Biol. Cybern. 73 529Google Scholar

    [4]

    Braitenberg V, Schuz A A 1991 J. Anat. 179 203

    [5]

    Sporns O, Tononi G, Kötter R 2005 PLoS Comput. Biol. 1 42Google Scholar

    [6]

    Hebb D O 1949 Am. J. Psychol. 63 633

    [7]

    Wixted J T, Ebbesen E B 1991 Psychol. Sci. 2 409Google Scholar

    [8]

    Douglas R, Mahowald M, Mead C 1995 Annu. Rev. Neurosci. 18 255Google Scholar

    [9]

    Jürgen S 2015 Neural Networks 61 85Google Scholar

    [10]

    Dean J, Corrado G S, Monga R, Chen K, Devin M, Le Q V, Mao M Z, Ranzato M A, Senior A, Tucker P, Yang K, Ng A Y 2012 Advances in Neural Information Processing Systems Harrahs and Harveys, Lake Tahoe, December 3–8, 2012 p1232

    [11]

    Rachmuth G, Poon C S 2008 Hfsp Journal 2 156Google Scholar

    [12]

    Liu Y H, Zhu L Q, Feng P, Shi Y, Wan Q 2015 Adv. Mater. 27 5599Google Scholar

    [13]

    Lont J B, Guggenbuhl W 1992 IEEE Trans. Neural Networks 3 457Google Scholar

    [14]

    Dmitri B S, Gregory S S, Duncan R S, Williams R S 2008 Nature 453 80Google Scholar

    [15]

    Jeong H, Shi L P 2019 J. Phys. D: Appl. Phys. 52 023003Google Scholar

    [16]

    Waser R, Aono M 2007 Nat. Mater. 6 833Google Scholar

    [17]

    Hirose Y, Hirose H 1976 J. Appl. Phys. 47 2767Google Scholar

    [18]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [19]

    Hui Q H, Zhao L, Wang X P 2019 Neurocomputing 330 11Google Scholar

    [20]

    Daniele I 2016 Semicond. Sci. Technol. 31 063002Google Scholar

    [21]

    Wu L, Liu H X, Li J B, Wang S L, Wang X 2019 Nanoscale Res. Lett. 14 184Google Scholar

    [22]

    Gurme S T, Dongale T D, Surwase S N, Kumbhar S D, More G M, Pati V L, Patil P S, Kamat R K, Jadhav J P 2018 Phys. Status Solidi. 215 1800550Google Scholar

    [23]

    Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J M, Qiu J, Barsoum M W Gogotsi Y 2014 PNAS 111 16676Google Scholar

    [24]

    Lei J C, Zhang X, Zhou Z, Lei J C, Zhang X, Zhou Z 2015 Front. Phys. Beijing 10 276Google Scholar

    [25]

    Yan X B, Wang K Y, Zhao J H, Zhou Z Y, Wang H, Wang J J, Zhang L, Li X Y, Xiao Z A, Zhao Q L, Pei Y F, Wang G, Qin C Y, Li H, Lou J Z, Liu Q, Zhou P 2019 Small 15 1900107Google Scholar

    [26]

    Li D, Wu B, Zhu X, Wang J, Ryu B, Lu W D, Lu W, Liang X 2018 ACS Nano 12 9240Google Scholar

    [27]

    Zhou L, Yang S W, Ding G Q, Yang J Q, Ren Y, Zhang S R, Mao J Y, Yang Y C, Zhou Y, Han S T 2019 Nano Energy 58 293Google Scholar

    [28]

    Radtke P K, Schimansky G L 2016 AIP Adv. 6 055119Google Scholar

    [29]

    Dickinson A 1981 Br. Med. Bull. 37 165Google Scholar

    [30]

    Zhang M C, Wang Y Q, Gao F, Wang Y, Shen X Y, He N, Zhu J L, Chen Y H, Wan X, Lian X J, Hu E T, Xu J G, Tong Y 2019 Ceram. Int. 45 19467Google Scholar

    [31]

    陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建 2019 物理学报 68 098501Google Scholar

    Chen Y H, Xu W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin. 68 098501Google Scholar

    [32]

    McAndrew C C, Coram G J, Gullapalli K K, Jones J B, Nagel L W, Roy A S, Roychowdhury J, Scholten A J, Smit G D J, Wang X, Yoshitomi S 2017 IEEE J. Electron Dev. 3 383

    [33]

    Messaris I, Serb A, Stathopoulos S, Khiat A, Nikolaidis S, Prodromakis T 2018 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37 3151Google Scholar

    [34]

    McDonald N R, Pino R E, Rozwood P J, Wysocki B T 2010 IEEE International Joint Conference on Neural Networks Barcelona, Spain, July 18–23, 2010 p1

    [35]

    Dongale T D, Patil P J, Desai N K, Chougule P P, Kumbhar S M, Waifalkar P P, Patil P B, Vhatkar R S, Takale M V, Gaikwad P K, Kamat R K 2016 Nano Convergence 3 16Google Scholar

    [36]

    Hu X, Feng G, Duan S, Liu L 2016 IEEE T. Neur. Net. Lear. 28 1889

    [37]

    Zhao J, Zhou Z, Zhang Y, Wang J, Zhang L, Li X, Zhao M, Wang H, Pei Y, Zhao Q, Xiao Z, Wang K, Qin C, Wang G, Li H, Ding B, Yan F, Wang K, Ren D, Liu B, Yan X 2019 J. Mater. Chem. C 7 1298Google Scholar

    [38]

    Pan Y, Wan T, Du H, Qu B, Wang D, Ha T J, Chu D 2018 J. Alloys Compd. 757 496Google Scholar

    [39]

    Hong X L, Loy J J, Dananjaya P A, Tan F, Ng C M, Lew W S 2018 J. Mater. Sci. 53 8720Google Scholar

    [40]

    Wan X, Liang D K, Gao Fei, Lian X J, Tong Y 2018 Appl. Phys. Express 11 114601Google Scholar

    [41]

    Yakopcic C, Tarek T M 2018 International Joint Conference on Neural Networks Rio de Janeiro, Brazil, July 8–13, 2018 p8489252

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究. 物理学报, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为. 物理学报, 2024, 73(11): 110503. doi: 10.7498/aps.73.20231972
    [3] 陈开辉, 樊贞, 董帅, 李文杰, 陈奕宏, 田国, 陈德杨, 秦明辉, 曾敏, 陆旭兵, 周国富, 高兴森, 刘俊明. 钙钛矿相界面插层对SrFeOx基忆阻器的性能提升. 物理学报, 2023, 72(9): 097301. doi: 10.7498/aps.72.20221934
    [4] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [5] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [6] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [7] 温新宇, 王亚赛, 何毓辉, 缪向水. 忆阻类脑计算. 物理学报, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [8] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [9] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [10] 王伟, 曾以成, 孙睿婷. 含三个忆阻器的六阶混沌电路研究. 物理学报, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [11] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理. 物理学报, 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [12] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [13] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性. 物理学报, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [14] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [15] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真. 物理学报, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [16] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路. 物理学报, 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [17] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [18] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [19] 梁燕, 于东升, 陈昊. 基于模拟电路的新型忆感器等效模型. 物理学报, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [20] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
计量
  • 文章访问数:  13135
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2019-08-27
  • 上网日期:  2019-11-26
  • 刊出日期:  2019-12-05

/

返回文章
返回