-
磁路和天线位置对电子回旋共振离子推力器(electron cyclotron resonance ion thruster, ECRIT)的电子加热、等离子体约束和输运过程都有很大的影响, 进而影响离子束流引出和中和器耦合电压. 本文开展不同磁路和天线位置下2 cm ECRIT离子束流和耦合电压变化规律的实验研究. 通过比较不同磁路的离子源和中和器的束流引出特性, 选出合理的磁路结构, 再比较不同天线位置对束流引出的影响. 归纳了磁路和天线位置对ECRIT的性能影响规律, 得到合理的推力器结构. 实验结果表明: 功率和流量的增加有助于提高离子引出束流和降低电子引出压; 保持天线空间位置不变, 合理的磁路结构能增大电子获能并减小粒子损失, 从而提高引出离子束流并降低耦合电压; 在合理磁路结构条件下, 离子源和中和器存在有利于离子引出和降低耦合电压的合理天线位置. 根据实验结果选择出结构较优的中和器和离子源进行中和实验. 结果表明: 有无中和器工作时对离子源束流引出的影响较小; 功率和流量为1 W, 0.1 sccm (1 sccm = 1 mL/min)的中和器与功率和流量为2 W, 0.3 sccm的离子源能良好匹配工作, 性能指标为离子束流5.3 mA、放电损耗337.5 W/A、推进剂利用率24.7%、推力368.6 μN、比冲1277.6 s、中和器耦合电压17.4 V. 研究结果有助于理解推力器工作机理, 并为设计和性能优化提供参考.
-
关键词:
- 电子回旋共振离子推力器 /
- 束流引出 /
- 中和
The advantages of miniature electron cyclotron resonance ion thruster (ECRIT) for space propulsion are long-life and simple-structure. The magnetic circuit and antenna position of ECRIT are crucial in the electron heating, plasma confinement and transportation process, which affect the beam extraction and the coupling voltage of neutralizer. In this article, the experimental studies on the ion beam extraction and coupling voltage of 2 cm ECRIT with different magnetic circuits and antenna positions are carried out. By comparing the beam extraction characteristics of the ion source and neutralizer of different magnetic circuits, a reasonable magnetic circuit structure is selected. And the influences of different antenna positions on the beam are compared. The influences of the magnetic circuit and antenna position on the performance of ECRIT are summarized to obtain a reasonable thruster structure. The experimental results show that the extracted beam increases with microwave power and xenon mass flow rate increasing. When the spatial position of antenna is fixed, a suitable magnetic circuit structure can increase electron heating and reduce particle loss, which is suitable for extracting ions and reducing the coupling voltage. With a suitable magnetic circuit, there is a suitable antenna position favourable for extracting ions and reducing the coupling voltage. According to the experimental results, the optimal structure of ion source and neutralizer are selected for neutralization experiments. The results show that when the neutralizer works, the beam extraction of the ion source is affected very little. When the neutralizer and ion source operate under the parameters of power and mass flow rate, respectively, of 1 W and 0.1 sccm (1 sccm = 1 mL/min), and also 2 W and 0.3 sccm, the thruster can operate coordinately to generate an ion beam of 5.3 mA, a discharge loss of 337.5 W/A, propellant utilization efficiency of 24.7%, thrust force of 368.6 μN, thrust specific impulse of 1277.6 s, and neutralizer coupling voltage of 17.4 V. The results can conduce to understanding the mechanism of the thruster and thus providing a reference for its design and performance optimization.[1] Pencil E J, Kamhawi H, Arrington L A 2004 Proceedings of 40 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, U.S.A., July 11−14, 2004 p3455
[2] [3] Wirz R, Katz I 2005 Proceedings of 41st AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit Tucson, U.S.A., July 10−13, 2005 p3690
[4] Patterson M, Haag T, Rawlin V, Kussmaul M 1994 Proceedings of 30 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Indianapolis, U.S.A., June 27−29, 1994 p2849
[5] Beattie J R, Matossian J N, Robson R 1990 J. Propulsion 6 145Google Scholar
[6] Loeb H W, Feili D, Popov G A, Obukhov V A, Balashov V V, Mogulkin A I, Murashko V M, Nesterenko A N, Khartov S 2011 Proceedings of 32 nd International Electric Propulsion Conference Wiesbaden, Germany, September 11−15, 2011 p290
[7] Bassner H, Killinger R, Leiter H, Müller J 2001 Proceedings of 27 th International Electric Propulsion Conference Pasadena, U.S.A., October 15−19, 2001 p105
[8] Takao Y, Masui H, Miyamoto T, Kataharada H, Ijiri H, Nakashima H 2004 Vacuum 73 449Google Scholar
[9] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰 2016 物理学报 65 045201Google Scholar
Jin Y Z, Yang J, Feng B B, Luo L T, Tang M J 2016 Acta Phys. Sin. 65 045201Google Scholar
[10] Satori S, Kuninaka H, Ohtaki M, Ishikawa Y 1997 Proceedings of 25 th International Electric Propulsion Conference Cleveland, Ohio, August 24–28, 1997 p31
[11] Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar
[12] Peng S X, Zhang A L, Ren H T, Zhang T, Xu Y, Zhang J F, Gong J H, Guo Z Y, Chen J E 2015 Chin. Phys. B 24 075203Google Scholar
[13] Koizumi H, Inagaki T, Kasagi Y, Naoi T, Hayashi T, Funase R, Komurasaki K 2014 Proceedings of 28 th Annual AIAA/USU Conference on Small Satellites Utah, U.S.A., August 4−7, 2014 p6
[14] Koizumi H, Kawahara H, Yaginuma K, Asakawa J, Nakagawa Y, Nakamura Y, Kojima S, Matsuguma T, Funase R, Nakatsuka J, Komurasaki K 2016 Trans. JSASS Aerospace Tech. Japan 14 13
[15] Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2017 J. Propuls. Power 34 960
[16] Nishiyama K, Hosoda S, Kuninaka H, Toyoda Y 2009 Proceedings of 31st International Electric Propulsion Conference Ann Arbor, U.S.A., September 20−24, 2009 p21
[17] Koizumi H, Kuninaka H 2008 Proceedings of 44th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Hartford, U.S.A., July 21−23, 2008 p4531
[18] Koizumi H, Kuninaka H 2010 J. Propuls. Power 26 601
[19] Koizumi H, Kuninaka H 2010 Proceedings of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Nashville, U.S.A., July 25−28, 2010 p6617
[20] Sugita Y, Koizumi H, Tsukizaki R, Kuninaka H, Takao Y, Yamagiwa Y, Matsui M 2013 Proceedings of 33rd International Electric Propulsion Conference Washington, U.S.A., October 6−10, 2013 p245
[21] Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar
[22] Hiramoto K, Nakagawa Y, Koizumi H, Takao Y 2017 Phys. Plasmas 24 064504Google Scholar
[23] Hiramoto K, Nakagawa Y, Koizumi H, Komurasaki K, Takao Y 2016 Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, U.S.A., July 25−27, 2016 p4946
[24] Koizumi H, Kuninaka H 2009 Trans. JSASS Space Tech. Japan 7 89
[25] Koizumi H, Kuninaka H 2009 Proceedings of 31st International Electric Propulsion Conference Ann Arbor, U.S.A., September 20−24, 2009 p178
[26] 汤明杰, 杨涓, 金逸舟, 冯冰冰, 罗立涛 2015 物理学报 64 215202Google Scholar
Tang M J, Yang J, Jin Y Z, Feng B B, Luo L T 2015 Acta Phys. Sin. 64 215202Google Scholar
[27] 孟海波, 杨涓, 朱康武, 孙俊, 黄益智, 金逸舟, 刘宪闯 2018 西北工业大学学报 36 42Google Scholar
Meng H B, Yang J, Zhu K W, Sun J, Huang Y Z, Jin Y Z, Liu X C 2018 J. NorthWest. Polytech. Univ. 36 42Google Scholar
[28] 黄益智 2018 硕士学位论文 (西安: 西北工业大学)
Huang Y Z 2018 M. S. Thesis (Xi'an: Northwestern Polytechnical University) (in Chinese)
[29] 迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第379−383页
Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp379−383 (in Chinese)
[30] Yamamoto N, Chikaoka T, Shinya K, Masui H, Nakashima H, Yoshiyuki T 2006 Proceedings of 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, U.S.A., July 9−12, 2006 p5177
-
表 1 栅极结构
Table 1. Grid geometry.
厚度/
mm孔径/
mm孔数 栅极间距/
mm电压/V 材料 屏栅 0.25 0.36 211 0.3 1500 不锈钢 加速栅 0.25 0.2 211 0.3 –350 表 2 四种放电室的磁路结构参数
Table 2. The magnetic circuit structure parameters of four discharge chambers.
放电室 外磁环高度H1/mm 外磁环宽度W1/mm 内磁环高度H2/mm 内磁环宽度W2/mm 1号 5.4 2.0 5.4 1.65 2号 5.6 2.7 5.8 1.8 3号 5.7 2.9 5.7 1.8 4号 5.8 3.0 5.6 1.8 -
[1] Pencil E J, Kamhawi H, Arrington L A 2004 Proceedings of 40 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, U.S.A., July 11−14, 2004 p3455
[2] [3] Wirz R, Katz I 2005 Proceedings of 41st AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit Tucson, U.S.A., July 10−13, 2005 p3690
[4] Patterson M, Haag T, Rawlin V, Kussmaul M 1994 Proceedings of 30 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Indianapolis, U.S.A., June 27−29, 1994 p2849
[5] Beattie J R, Matossian J N, Robson R 1990 J. Propulsion 6 145Google Scholar
[6] Loeb H W, Feili D, Popov G A, Obukhov V A, Balashov V V, Mogulkin A I, Murashko V M, Nesterenko A N, Khartov S 2011 Proceedings of 32 nd International Electric Propulsion Conference Wiesbaden, Germany, September 11−15, 2011 p290
[7] Bassner H, Killinger R, Leiter H, Müller J 2001 Proceedings of 27 th International Electric Propulsion Conference Pasadena, U.S.A., October 15−19, 2001 p105
[8] Takao Y, Masui H, Miyamoto T, Kataharada H, Ijiri H, Nakashima H 2004 Vacuum 73 449Google Scholar
[9] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰 2016 物理学报 65 045201Google Scholar
Jin Y Z, Yang J, Feng B B, Luo L T, Tang M J 2016 Acta Phys. Sin. 65 045201Google Scholar
[10] Satori S, Kuninaka H, Ohtaki M, Ishikawa Y 1997 Proceedings of 25 th International Electric Propulsion Conference Cleveland, Ohio, August 24–28, 1997 p31
[11] Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar
[12] Peng S X, Zhang A L, Ren H T, Zhang T, Xu Y, Zhang J F, Gong J H, Guo Z Y, Chen J E 2015 Chin. Phys. B 24 075203Google Scholar
[13] Koizumi H, Inagaki T, Kasagi Y, Naoi T, Hayashi T, Funase R, Komurasaki K 2014 Proceedings of 28 th Annual AIAA/USU Conference on Small Satellites Utah, U.S.A., August 4−7, 2014 p6
[14] Koizumi H, Kawahara H, Yaginuma K, Asakawa J, Nakagawa Y, Nakamura Y, Kojima S, Matsuguma T, Funase R, Nakatsuka J, Komurasaki K 2016 Trans. JSASS Aerospace Tech. Japan 14 13
[15] Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2017 J. Propuls. Power 34 960
[16] Nishiyama K, Hosoda S, Kuninaka H, Toyoda Y 2009 Proceedings of 31st International Electric Propulsion Conference Ann Arbor, U.S.A., September 20−24, 2009 p21
[17] Koizumi H, Kuninaka H 2008 Proceedings of 44th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Hartford, U.S.A., July 21−23, 2008 p4531
[18] Koizumi H, Kuninaka H 2010 J. Propuls. Power 26 601
[19] Koizumi H, Kuninaka H 2010 Proceedings of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Nashville, U.S.A., July 25−28, 2010 p6617
[20] Sugita Y, Koizumi H, Tsukizaki R, Kuninaka H, Takao Y, Yamagiwa Y, Matsui M 2013 Proceedings of 33rd International Electric Propulsion Conference Washington, U.S.A., October 6−10, 2013 p245
[21] Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar
[22] Hiramoto K, Nakagawa Y, Koizumi H, Takao Y 2017 Phys. Plasmas 24 064504Google Scholar
[23] Hiramoto K, Nakagawa Y, Koizumi H, Komurasaki K, Takao Y 2016 Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, U.S.A., July 25−27, 2016 p4946
[24] Koizumi H, Kuninaka H 2009 Trans. JSASS Space Tech. Japan 7 89
[25] Koizumi H, Kuninaka H 2009 Proceedings of 31st International Electric Propulsion Conference Ann Arbor, U.S.A., September 20−24, 2009 p178
[26] 汤明杰, 杨涓, 金逸舟, 冯冰冰, 罗立涛 2015 物理学报 64 215202Google Scholar
Tang M J, Yang J, Jin Y Z, Feng B B, Luo L T 2015 Acta Phys. Sin. 64 215202Google Scholar
[27] 孟海波, 杨涓, 朱康武, 孙俊, 黄益智, 金逸舟, 刘宪闯 2018 西北工业大学学报 36 42Google Scholar
Meng H B, Yang J, Zhu K W, Sun J, Huang Y Z, Jin Y Z, Liu X C 2018 J. NorthWest. Polytech. Univ. 36 42Google Scholar
[28] 黄益智 2018 硕士学位论文 (西安: 西北工业大学)
Huang Y Z 2018 M. S. Thesis (Xi'an: Northwestern Polytechnical University) (in Chinese)
[29] 迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第379−383页
Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp379−383 (in Chinese)
[30] Yamamoto N, Chikaoka T, Shinya K, Masui H, Nakashima H, Yoshiyuki T 2006 Proceedings of 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, U.S.A., July 9−12, 2006 p5177
计量
- 文章访问数: 6906
- PDF下载量: 63
- 被引次数: 0