搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应

刘静 王琳倩 黄忠孝

引用本文:
Citation:

基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应

刘静, 王琳倩, 黄忠孝

Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure

Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao
PDF
HTML
导出引用
  • 基于双脉冲技术, 研究了GaN缓冲层陷阱对AlGaN/GaN高电子迁移率晶体管电流崩塌效应的影响. 结果表明, 栅边缘漏侧的电场峰值使得沟道电子跃迁至缓冲层, 并被缓冲层中的陷阱俘获是造成电流崩塌的主要原因之一. 提出了势垒层局部凹槽结构, 降低了栅边缘漏侧的电场峰值, 使电场分布更加均匀, 改善了器件的电流崩塌效应. 与传统AlGaN/GaN 高电子迁移率晶体管结构相比, 新器件结构对电流崩塌效应的抑制作用至少提升了22.30%.
    Due to the excellent properties of GaN, such as wide band gap, high electron mobility, high saturation speed, and high breakdown electric field, AlGaN/GaN high electron mobility transistor (HEMT) possesses highly promising applications in the fields of high power, radio frequency, and high temperature applications. However, they are still subjected to the influence of current collapse which strangles its development. Based on the double-pulse technique, the effect of GaN buffer layer trap on the current collapse of AlGaN/GaN HEMT is studied. The results show that the electric field peak at the gate edge is one of the main causes of current collapse. The channel electrons are trapped by the buffer trap under the peak electric field. Because the response speed of the trap in the buffer layer is slow, the channel can not be turned on immediately after the gate voltage has jumped to 0 V, which leads the current to collapse. In this paper, the new structure is proposed by introducing a groove structure in the barrier layer. The channel two-dimensional electron gas is modulated by the groove structure, which influences the channel electric field of AlGaN/GaN HEMT device, reduces the electric field peak at the gate edge, and improves the current collapse effect of the device. Comparing with the traditional AlGaN/GaN HEMT, the inhibition effect of the new device structure on current collapse is increased by 22.30%. The length and height of the groove structure are the critical parameters to affect the new HEMT performance. The optimal parameters of length and hight show that when the length of the groove is 1 μm and the height is 0.01 μm, the current collapse of HEMT and its performance are significantly improved.
      通信作者: 王琳倩, 13720761561@163.com
    • 基金项目: 陕西省重点研发计划(批准号: 2019GY-060)资助的课题
      Corresponding author: Wang Lin-Qian, 13720761561@163.com
    • Funds: Project supported by the Key Research and Development of Shaanxi Province, China (Grant No. 2019GY-060)
    [1]

    Lin Z T, Chen X F, Zhu Y H, Chen X W, Huang L G, Li G Q 2018 IEEE Trans. Electron Dev. 65 5373Google Scholar

    [2]

    Zhao L X, Zhu S C, Wu C H, Yang C, Yu Z G, Yang H, Liu L 2016 Sci. China: Phys. Mech. Astron. 59 107301Google Scholar

    [3]

    Zhao L X, Yu Z G, Sun B, Zhu S C, An P B, Yang C, Liu L, Wang J X, Li J M 2015 Chin. Phy. B 24 068506Google Scholar

    [4]

    Chen K J, Häberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y F 2017 IEEE Trans. Electron Dev. 64 779Google Scholar

    [5]

    余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生 2012 物理学报 61 207301Google Scholar

    Yu C H, Luo X D, Zhou W Z, Luo Q Z, Liu P S 2012 Acta Phys. Sin. 61 207301Google Scholar

    [6]

    Radhakrishna U, Choi P, Antoniadis D A 2019 IEEE Trans. Electron Dev. 66 95Google Scholar

    [7]

    Zhang C, Wang M, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J, Shen B 2015 IEEE Trans. Electron Dev. 62 2475Google Scholar

    [8]

    Meneghini M, Rossetto I, Bisi D, Stocco A, Pantellini A, Meneghesso G, Zanoni E 2014 IEEE Trans. Electron Dev. 61 4070Google Scholar

    [9]

    Miccoli C, Martino V C, Reina S, Rinaudo S 2013 IEEE Electron Dev. Lett. 34 1121Google Scholar

    [10]

    del Alamo J A, Lee E S 2019 IEEE Trans. Electron Dev. 66 4578Google Scholar

    [11]

    Gan C L, Sasangka W A, Thompson C V 2019 Electron Devices Technology and Manufacturing Conference Singapore, March 12−15, 2019 p71

    [12]

    周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红 2018 物理学报 67 178501Google Scholar

    Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501Google Scholar

    [13]

    Ghosh S, Das S, Dinara S M, Bag A, Chakraborty A, Mukhopadhyay P, Jana S K, Biswas D 2018 IEEE Trans. Electron Dev. 65 1333Google Scholar

    [14]

    Subramani N K, Couvidat J, Hajjar A A, Nallatamby J C, Quéré R 2017 J. Electron Dev. Soc. 5 175Google Scholar

    [15]

    Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE Trans. Electron Dev. 48 560Google Scholar

    [16]

    Hwang I, Kim J, Chong S, Choi H S, Hwang S K, Oh J, Shin J K, Chung U I 2013 IEEE Electron Dev. Lett. 34 1494Google Scholar

    [17]

    Nakano K, Hanawa H, Horio K 2018 Workshop on Wide Bandgap Power Devices and Applications in Asia Xi'an, May 16–18, 2018 p131

    [18]

    Kabemura T, Ueda S, Kawada Y, Horio K 2018 IEEE Trans. Electron Dev. 65 3848Google Scholar

    [19]

    Wang C H, Ho S Y, Huang J J 2016 IEEE Electron Dev. Lett. 37 74Google Scholar

    [20]

    Nishitani T, Yamaguchi R, Yamazaki T, Asubar J T, Tokuda H, Kuzuhara M 2018 IEEE International Meeting for Future of Electron Devices Kansai Kyoto, June 21–22, 2018 p1

    [21]

    Koehler A D, Anderson T J, Tadjer M J, Weaver B D, Greenlee J D, Shahin D I, HobartK D, Kub F J 2016 IEEE Electron Dev. Lett. 37 545Google Scholar

    [22]

    Arakawa Y, Ueno K, Imabeppu H, Kobayashi A, Ohta J, Fujioka H 2017 Appl. Phys. Lett. 110 042103Google Scholar

    [23]

    Mukherjee K, Darracq F, Curutchet A, Malbert N, Labat N 2017 Microelectron. Reliab. 76 350

  • 图 1  AlGaN/GaN HEMT结构示意图 (a)传统AlGaN/GaN HEMT; (b)势垒层局部凹槽结构AlGaN/GaN HEMT

    Fig. 1.  Schematic cross-section of AlGaN/GaN HEMT: (a) Conventional AlGaN/GaN HEMT; (b) AlGaN/GaN HEMT with barrier layer local groove structure.

    图 2  脉冲仿真电压偏置条件

    Fig. 2.  Pulse simulation voltage bias conditions.

    图 3  双脉冲下的电流崩塌效应

    Fig. 3.  Current collapse effect under double pulse.

    图 4  沟道电子浓度曲线

    Fig. 4.  channel electron concentration curves.

    图 5  不同时刻电子占据陷阱的概率分布情况 (a) t = 1 × 10–6 s; (b) t = 1 × 10–3 s; (c) t = 0.1 s; (d)直流情况

    Fig. 5.  Probability distribution of electron occupying trap at different times: (a) t = 1 × 10–6 s; (b) t = 1 × 10–3 s; (c) t = 0.1 s; (d) direct current.

    图 6  电子占据陷阱的浓度分布情况 (a) t = 0.5 × 10–7 s; (b) t = 1.05 × 10–7 s; (c) t = 1.1 × 10–7 s; (d) t = 1 × 10–6 s

    Fig. 6.  Concentration distribution of electron occupying trap: (a) t = 0.5 × 10–7 s; (b) t = 1.05 × 10–7 s; (c) t = 1.1 × 10–7 s; (d) t = 1 × 10–6 s.

    图 7  栅极边缘处沟道电场

    Fig. 7.  Channel electric field at the edge of the gate.

    图 8  栅极边缘电子浓度随时间的变化

    Fig. 8.  Electron concentration at the edge of the gate as a function of time.

    图 9  凹槽结构与传统结构器件的沟道电场分布

    Fig. 9.  Channel electric field distribution of groove structure and conventional structure device.

    图 10  凹槽结构与传统结构器件的电流崩塌对比

    Fig. 10.  Comparison of current collapse between groove structure and conventional structural devices.

    图 11  凹槽结构与传统结构器件在不同时刻的沟道电场分布

    Fig. 11.  Channel electric field distribution at different times for the groove structure and the conventional structure device.

    图 12  凹槽结构与传统结构器件在不同时刻沟道电子浓度分布

    Fig. 12.  Channel electron concentration distribution at different times for the groove structure and the conventional structure device.

    图 13  电子占据缓冲层陷阱浓度随时间的变化

    Fig. 13.  Electron occuping buffer layer trap concentration as a function of time.

  • [1]

    Lin Z T, Chen X F, Zhu Y H, Chen X W, Huang L G, Li G Q 2018 IEEE Trans. Electron Dev. 65 5373Google Scholar

    [2]

    Zhao L X, Zhu S C, Wu C H, Yang C, Yu Z G, Yang H, Liu L 2016 Sci. China: Phys. Mech. Astron. 59 107301Google Scholar

    [3]

    Zhao L X, Yu Z G, Sun B, Zhu S C, An P B, Yang C, Liu L, Wang J X, Li J M 2015 Chin. Phy. B 24 068506Google Scholar

    [4]

    Chen K J, Häberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y F 2017 IEEE Trans. Electron Dev. 64 779Google Scholar

    [5]

    余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生 2012 物理学报 61 207301Google Scholar

    Yu C H, Luo X D, Zhou W Z, Luo Q Z, Liu P S 2012 Acta Phys. Sin. 61 207301Google Scholar

    [6]

    Radhakrishna U, Choi P, Antoniadis D A 2019 IEEE Trans. Electron Dev. 66 95Google Scholar

    [7]

    Zhang C, Wang M, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J, Shen B 2015 IEEE Trans. Electron Dev. 62 2475Google Scholar

    [8]

    Meneghini M, Rossetto I, Bisi D, Stocco A, Pantellini A, Meneghesso G, Zanoni E 2014 IEEE Trans. Electron Dev. 61 4070Google Scholar

    [9]

    Miccoli C, Martino V C, Reina S, Rinaudo S 2013 IEEE Electron Dev. Lett. 34 1121Google Scholar

    [10]

    del Alamo J A, Lee E S 2019 IEEE Trans. Electron Dev. 66 4578Google Scholar

    [11]

    Gan C L, Sasangka W A, Thompson C V 2019 Electron Devices Technology and Manufacturing Conference Singapore, March 12−15, 2019 p71

    [12]

    周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红 2018 物理学报 67 178501Google Scholar

    Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501Google Scholar

    [13]

    Ghosh S, Das S, Dinara S M, Bag A, Chakraborty A, Mukhopadhyay P, Jana S K, Biswas D 2018 IEEE Trans. Electron Dev. 65 1333Google Scholar

    [14]

    Subramani N K, Couvidat J, Hajjar A A, Nallatamby J C, Quéré R 2017 J. Electron Dev. Soc. 5 175Google Scholar

    [15]

    Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE Trans. Electron Dev. 48 560Google Scholar

    [16]

    Hwang I, Kim J, Chong S, Choi H S, Hwang S K, Oh J, Shin J K, Chung U I 2013 IEEE Electron Dev. Lett. 34 1494Google Scholar

    [17]

    Nakano K, Hanawa H, Horio K 2018 Workshop on Wide Bandgap Power Devices and Applications in Asia Xi'an, May 16–18, 2018 p131

    [18]

    Kabemura T, Ueda S, Kawada Y, Horio K 2018 IEEE Trans. Electron Dev. 65 3848Google Scholar

    [19]

    Wang C H, Ho S Y, Huang J J 2016 IEEE Electron Dev. Lett. 37 74Google Scholar

    [20]

    Nishitani T, Yamaguchi R, Yamazaki T, Asubar J T, Tokuda H, Kuzuhara M 2018 IEEE International Meeting for Future of Electron Devices Kansai Kyoto, June 21–22, 2018 p1

    [21]

    Koehler A D, Anderson T J, Tadjer M J, Weaver B D, Greenlee J D, Shahin D I, HobartK D, Kub F J 2016 IEEE Electron Dev. Lett. 37 545Google Scholar

    [22]

    Arakawa Y, Ueno K, Imabeppu H, Kobayashi A, Ohta J, Fujioka H 2017 Appl. Phys. Lett. 110 042103Google Scholar

    [23]

    Mukherjee K, Darracq F, Curutchet A, Malbert N, Labat N 2017 Microelectron. Reliab. 76 350

计量
  • 文章访问数:  8147
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-30
  • 修回日期:  2019-10-14
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回