-
Ag@SiO2纳米耦合结构同时具有等离激发和衍射散射特性, 可有效调控光波的行进路径和能量分布, 在薄膜太阳电池陷光领域极具潜力. 本文基于时域有限差分方法和严格耦合波分析, 建立三维电磁仿真模型, 研究Ag@SiO2耦合结构对非晶硅电池光谱响应的调控机理, 通过优化设计, 得到高陷光电池器件. 结果表明: 当Ag和SiO2特征尺寸分别为18和150 nm时, 共振波和衍射波达到最优耦合, 通过耦合结构进入电池响应层的透射光谱最大, 相应量子效率显著增强. 与同尺寸的平面电池相比, 其光电转换效率从7.19%提高到7.80%, 相对提高了8.48%.
-
关键词:
- Ag@SiO2耦合结构 /
- 陷光 /
- 衍射散射 /
- 等离激发
The coupled nano-structure Ag@SiO2 has both plasmon excitation like metallic nanoparticles and diffraction scattering like a dielectric nanosphere, which effectively controls the propagation path and the energy distribution of incident light and shows great potential applications in light trapping for thin film solar cells. In this work, we construct a three-dimensional electromagnetic model based on the finite-difference time-domain (FDTD) and rigorous coupled-wave analysis (RCWA) method to investigate the regulation mechanism of Ag@SiO2 coupling structure to the spectral response of amorphous silicon cells. By being optimally designed, a high-efficiency cell device is achieved. The results show that the transmitted light into the active layer reaches a maximum value when Ag and SiO2 have their feature sizes of 18 and 150 nm, respectively. The absorption spectrum of the corresponding cell device also arrives at its maximum value. The photoelectric conversion efficiency is enhanced from 7.19% to 7.80%, with an increment of 8.48% compared with the flat solar cell with an equivalent thickness of absorbing layer.[1] Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar
[2] Zhong S H, Wang W J, Zhuang Y F, Zeng G, Shen W Z 2016 Adv. Funct. Mater. 26 4768Google Scholar
[3] 耿超, 郑义, 张永哲, 严辉 2016 物理学报 65 070201Google Scholar
Geng C, Zheng Y, Zhang Y Z, Yan H 2016 Acta Phys. Sin. 65 070201Google Scholar
[4] 黄仙健, 沈宏君, 李婷, 李新兰 2018 太阳能学报 39 3406Google Scholar
Huang X J, Shen H J, Li T, Li X L 2018 Acta Energiae Solaris Sinica 39 3406Google Scholar
[5] 陈培专, 于莉媛, 牛萍娟, 付贤松, 杨广华, 张建军, 侯国付 2018 物理学报 67 028802Google Scholar
Chen P Z, Yu L Y, Niu P J, Fu X S, Yang G H, Zhang J J, Hou G F 2018 Acta Phys. Sin. 67 028802Google Scholar
[6] Yu P, Wu J, Liu S T, Xiong J, Chennupati Jagadish, Wang Z M 2016 Nano Today 11 704Google Scholar
[7] Zhang S Y, Liu W, Li Z F, Liu M, Liu Y S, Wang X D, Yang F H 2016 Chin. Phys. B 25 106802Google Scholar
[8] Shen X Q, Wang Q K, WangYang P H 2016 IEEE Photonics Technol. Lett. 28 1477Google Scholar
[9] 虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar
Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar
[10] 李楠楠, 章瀚, 王建方 2019 中国科学: 物理学 力学 天文学 49 124204Google Scholar
Li N N, Zhang H, Wang J F 2019 Sci. Sin.-Phys. Mech. Astron. 49 124204Google Scholar
[11] Enrichi F, Quandt A, Righini G C 2017 Renewable Sustainable Energy Rev. 8 094Google Scholar
[12] Kosei U, Tomoya O, Quan S, Xu S, Hiroaki M 2018 Chem. Rev. 118 2955Google Scholar
[13] Dhanavel G, Xie F Y, Sun Q Q, Li Y F, Wei M D 2018 Langmuir 34 5367Google Scholar
[14] Li X, Choy W C H, Lu H, Sha W E I, Ho A H P 2013 Adv. Funct. Mater. 23 2728Google Scholar
[15] Dennis M C J 2015 Ph. D. Dissertation (California: California Institute of Technology)
[16] Holly F Z, Olivia H, Joseph A W, Chanse H, William R E, Rizia B 2014 ACS Photonics 1 806Google Scholar
[17] William R E, Andrew C, Holly F Z, Poorva A, Kevin J M, Rizia B 2014 Nanoscale 6 12626Google Scholar
[18] Yoon H J, Yu J J, Seokhyoung K, Li N Q, Kyungwha C, Dong H K 2016 Chem. Rev. 116 14982Google Scholar
[19] Wang Y, Zhou X, Liang C, Li P W, Hu X T, Cai Q B, Zhang Y Q, Li F Y, Li M Z, Song Y L 2017 Adv. Electron. Mater. 3 1700169Google Scholar
[20] Edward D P 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press) p519
[21] 沈向前 2016 博士学位论文 (上海: 上海交通大学)
Shen X Q 2016 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)
-
图 4 不同结构电池光谱响应特性和光电转换性能 (a)电池吸收曲线; (b)量子响应效率; (c)非响应层中的光学损失; (d)伏安特性曲线
Fig. 4. Spectral response characteristics and photoelectric conversion performance of solar cell with different structures: (a) Total absorption of cell devices; (b) external quantum efficiency; (c) optical loss in inactive layers; (d) current voltage characteristics.
-
[1] Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar
[2] Zhong S H, Wang W J, Zhuang Y F, Zeng G, Shen W Z 2016 Adv. Funct. Mater. 26 4768Google Scholar
[3] 耿超, 郑义, 张永哲, 严辉 2016 物理学报 65 070201Google Scholar
Geng C, Zheng Y, Zhang Y Z, Yan H 2016 Acta Phys. Sin. 65 070201Google Scholar
[4] 黄仙健, 沈宏君, 李婷, 李新兰 2018 太阳能学报 39 3406Google Scholar
Huang X J, Shen H J, Li T, Li X L 2018 Acta Energiae Solaris Sinica 39 3406Google Scholar
[5] 陈培专, 于莉媛, 牛萍娟, 付贤松, 杨广华, 张建军, 侯国付 2018 物理学报 67 028802Google Scholar
Chen P Z, Yu L Y, Niu P J, Fu X S, Yang G H, Zhang J J, Hou G F 2018 Acta Phys. Sin. 67 028802Google Scholar
[6] Yu P, Wu J, Liu S T, Xiong J, Chennupati Jagadish, Wang Z M 2016 Nano Today 11 704Google Scholar
[7] Zhang S Y, Liu W, Li Z F, Liu M, Liu Y S, Wang X D, Yang F H 2016 Chin. Phys. B 25 106802Google Scholar
[8] Shen X Q, Wang Q K, WangYang P H 2016 IEEE Photonics Technol. Lett. 28 1477Google Scholar
[9] 虞华康, 刘伯东, 吴婉玲, 李志远 2019 物理学报 68 149101Google Scholar
Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Phys. Sin. 68 149101Google Scholar
[10] 李楠楠, 章瀚, 王建方 2019 中国科学: 物理学 力学 天文学 49 124204Google Scholar
Li N N, Zhang H, Wang J F 2019 Sci. Sin.-Phys. Mech. Astron. 49 124204Google Scholar
[11] Enrichi F, Quandt A, Righini G C 2017 Renewable Sustainable Energy Rev. 8 094Google Scholar
[12] Kosei U, Tomoya O, Quan S, Xu S, Hiroaki M 2018 Chem. Rev. 118 2955Google Scholar
[13] Dhanavel G, Xie F Y, Sun Q Q, Li Y F, Wei M D 2018 Langmuir 34 5367Google Scholar
[14] Li X, Choy W C H, Lu H, Sha W E I, Ho A H P 2013 Adv. Funct. Mater. 23 2728Google Scholar
[15] Dennis M C J 2015 Ph. D. Dissertation (California: California Institute of Technology)
[16] Holly F Z, Olivia H, Joseph A W, Chanse H, William R E, Rizia B 2014 ACS Photonics 1 806Google Scholar
[17] William R E, Andrew C, Holly F Z, Poorva A, Kevin J M, Rizia B 2014 Nanoscale 6 12626Google Scholar
[18] Yoon H J, Yu J J, Seokhyoung K, Li N Q, Kyungwha C, Dong H K 2016 Chem. Rev. 116 14982Google Scholar
[19] Wang Y, Zhou X, Liang C, Li P W, Hu X T, Cai Q B, Zhang Y Q, Li F Y, Li M Z, Song Y L 2017 Adv. Electron. Mater. 3 1700169Google Scholar
[20] Edward D P 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press) p519
[21] 沈向前 2016 博士学位论文 (上海: 上海交通大学)
Shen X Q 2016 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)
计量
- 文章访问数: 6435
- PDF下载量: 115
- 被引次数: 0