搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锡基钙钛矿太阳能电池载流子传输层的探讨

甘永进 蒋曲博 覃斌毅 毕雪光 李清流

引用本文:
Citation:

锡基钙钛矿太阳能电池载流子传输层的探讨

甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流

Carrier transport layers of tin-based perovskite solar cells

Gan Yong-Jin, Jiang Qu-Bo, Qin Bin-Yi, Bi Xue-Guang, Li Qing-Liu
PDF
HTML
导出引用
  • 锡基钙钛矿太阳能电池可避免铅元素对环境带来的污染, 近年来已成为光伏领域的研究热点. 本文以SCAPS-1D太阳能电池数值模拟软件为平台, 对不同电子传输层和不同空穴传输层的锡基钙钛矿太阳能电池器件的性能进行数值仿真对比, 从理论上分析不同载流子传输层的锡基钙钛矿太阳能电池的性能差异. 结果显示, 载流子传输层与钙钛矿层的能带对齐对电池性能至关重要. 电子传输层具有更高的导带或电子准费米能级以及空穴传输层具有更低的价带或空穴准费米能级时, 对电池输出更大的开路电压有促进作用. 另外, 当电子传输层的导带高于钙钛矿层导带或钙钛矿层的价带高于空穴传输层的价带时, 钙钛矿层与载流子传输层界面形成spike势垒, 界面复合机制相对较弱, 促使电池获得更佳的性能. 当Cd0.5Zn0.5S和MASnBr3分别作为电子传输层和空穴传输层时, 与其他材料相比, 获得了更优的输出特性: 开路电压Voc = 0.94 V, 短路电流密度Jsc = 30.35 mA/cm2, 填充因子FF = 76.65%, 功率转换效率PCE = 21.55%, 可认为Cd0.5Zn0.5S和MASnBr3是设计锡基钙钛矿太阳能电池结构合适的载流子传输层材料. 这些模拟结果有助于实验上设计并制备高性能的锡基钙钛矿太阳能电池.
    To avoid environmental pollution caused by lead, the tin-based perovskite solar cells have become a research hotspot in the photovoltaic field. Numerical simulations of tin-based perovskite solar cells are conducted by the solar cell simulation software, SCAPS-1D, with different electron transport layers and hole transport layers. And then the performances of perovskite solar cells are compared with each other and analyzed on different carrier transport layers. The results show that band alignment between the carrier transport layer and the perovskite layer are critical to cell performances. A higher conduction band or electronic quasi-Fermi level of electron transport layer can lead to a higher open circuit voltage. Similarly, a lower valence band or hole quasi-Fermi level of hole transport layer can also promote a higher open circuit voltage. In addition, when the conduction band of electron transport layer is higher than that of the absorber, a spike barrier is formed at the interface between the electron transport layer and perovskite layer. Nevertheless, a spike barrier is formed at the interface between the perovskite layer and the hole transport layer if the valence band of hole transport layer is lower than that of the absorber. However, if the conduction band of electron transport layer is lower than that of the absorber or the valence band of hole transport layer is higher than that of the absorber, a cliff barrier is formed. Although the transport of carrier is hindered by spike barrier compared with cliff barrier, the activation energy for carrier recombination becomes lower than the bandgap of the perovskite layer, leading to the weaker interface recombination and the better performance. Comparing with other materials, satisfying output parameters are obtained when Cd0.5Zn0.5S and MASnBr3 are adopted as the electron transport layer and the hole transport layer, respectively. The better performances are obtained as follows: Voc = 0.94 V, Jsc = 30.35 mA/cm2, FF = 76.65%, and PCE = 21.55%, so Cd0.5Zn0.5S and MASnBr3 are suitable carrier transport layer materials. Our researches can help to design the high-performance tin-based perovskite solar cells.
      通信作者: 毕雪光, xgb@ylu.edu.cn
    • 基金项目: 广西自然科学基金青年基金(批准号: 2019GXNSFBA245076)资助的课题
      Corresponding author: Bi Xue-Guang, xgb@ylu.edu.cn
    • Funds: Project supported by the Natural Science Foundation Youth Fund Projectof Guangxi, China (Grant No. 2019 GXNSFBA245076)
    [1]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151Google Scholar

    [2]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [3]

    梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 物理学报 69 057901Google Scholar

    Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901Google Scholar

    [4]

    Conings B, Drijkoningen J, Gauquelin N, et al. 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [5]

    Wang R, Mujahid M, Duan Y, Wang Z K, Xue J, Yang Y 2019 Adv. Funct. Mater. 29 1808843Google Scholar

    [6]

    Wang Q, Phung N, Di Girolamo D, Vivo P, Abate A 2019 Energy Environ. Sci. 12 865Google Scholar

    [7]

    Liang J, Liu J, Jin Z 2017 Solar RRL 1 1700086Google Scholar

    [8]

    Yang T C, Fiala P, Jeangros Q, Ballif C 2018 Joule 2 1421Google Scholar

    [9]

    Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Solar RRL 2 1700188Google Scholar

    [10]

    Song T, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Letters 2 897Google Scholar

    [11]

    Green MA, Ho-Baillie A, Snaith HJ 2014 Nat. Photonics 8 506Google Scholar

    [12]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [13]

    Baig F, Khattak Y H, Marí B, Beg S, Ahmed A, Khan K 2018 J. Electron. Mater. 47 5275Google Scholar

    [14]

    Chen M, Ju M, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar

    [15]

    Chakraborty K, Choudhury MG, Paul S 2019 Sol. Energy 194 886Google Scholar

    [16]

    Islam M A, Rahman K S, Misran H, Asim N, Hossain M S, Akhtaruzzaman M, Amin N 2019 Results Phys. 14 102518Google Scholar

    [17]

    Lakhdar N, Hima A 2020 Opt. Mater. 99 109517Google Scholar

    [18]

    Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181 372Google Scholar

    [19]

    Sajid, Elseman A M, Ji J, Dou S, Huang H, Cui P, Wei D, Li M 2018 Chin. Phys. B 27 80Google Scholar

    [20]

    Minemoto T, Murata M 2014 Curr. Appl. Phys. 14 1428Google Scholar

    [21]

    Teimour R, Mohammadpour R 2018 Superlattices Microstruct. 118 116Google Scholar

    [22]

    Du H J, Wang W C, Zhu J Z 2016 Chin. Phys. B 25 108802Google Scholar

    [23]

    Chouhan A S, Jasti N P, Avasthi S 2018 Mater. Lett. 221 150Google Scholar

    [24]

    Huang S, Rui Z, Chi D, Bao D 2019 Journal of Semiconductors 40 19Google Scholar

    [25]

    Lin L Y, Jiang L Q, Qiu Y, Fan B D 2018 J. Phys. Chem. Solids 122 19Google Scholar

    [26]

    Lin L Y, Jiang L Q, Li P, Fan B D, Qiu Y 2019 J. Phys. Chem. Solids 124 205Google Scholar

    [27]

    Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z 2018 ACS Appl. Energy Mater. 1 2215Google Scholar

    [28]

    Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8Google Scholar

    [29]

    Klenk R 2001 Thin Solid Films 387 135Google Scholar

    [30]

    Gloeckler M, Sites J 2005 Thin Solid Films 480 241Google Scholar

    [31]

    Minemoto T, Hashimoto Y, Satoh T, Negami T, Takakura H, Hamakawa Y 2001 J. Appl. Phys. 89 8327Google Scholar

    [32]

    Minemoto T, Hashimoto Y, Satoh T, et al. 2003 Sol. Energ. Mater. Sol. Cells 75 121Google Scholar

    [33]

    Torndahl T, Platzer-Bjorkman C, Kessler J, Edoff M 2007 Prog. Photovolt 15 225Google Scholar

    [34]

    Minemoto T, Matsui T, Takakura H, et al. 2001 Sol. Energ. Mater. Sol. Cells 67 83Google Scholar

    [35]

    Ryu S, Noh J H, Jeon N J, Chan Kim Y, Yang W S, Seo J, Seok S I 2014 Energy Environ. Sci. 7 2614Google Scholar

    [36]

    Tanaka K, Minemoto T, Takakura H 2009 Sol. Energy 83 477Google Scholar

    [37]

    Karimi E, Ghorashi S M B 2017 J. Nanophotonics 11 032510Google Scholar

    [38]

    蒙镜蓉, 李国龙, 索鑫磊, 张立来, 苏杭, 李婉, 王浩 2019 激光与光电子学进展 56 261

    Meng J R, Li G L, Suo X L, Zhang L L, Su H, Li W, Wang H 2019 L. & O. Progress 56 261

    [39]

    Gao F Q, Li C H, Qin L, Zhu L J, Huang X, Liu H, Liang L, Hou Y B, Lou Z D, Hu Y F, Teng F 2018 RSC Adv. 8 14025Google Scholar

    [40]

    Adhikari K R, Gurung S, Bhattarai B K, Soucase B M 2016 Phys. Status Solidi C 13 13Google Scholar

    [41]

    林灵燕, 范宝殿 2017 泉州师范学院学报 36 50

    Lin L Y, Fan B D 2017 J. Quanzhou Normal Univ. 36 50

    [42]

    Devi N, Parrey K A, Aziz A, Datta S 2018 J. Vac. Sci. Technol. B 36 105Google Scholar

    [43]

    孙亚平, 陈慧颖, 陈高玲, 王多发, 章天金 2018 湖北大学学报 40 518

    Sun Y P, Chen H Y, Chen G L, Wang D F, Zhang T J 2018 J. Hubei Univ. 40 518

    [44]

    李毅, 朱俊, 张旭辉, 戴松元 2019 太阳能学报 40 2630

    Li Y, Zhu J, Zhang X H, Dai S Y 2019 Acta Energ. Sol. Sin. 40 2630

    [45]

    Hao F, Stoumpos C C, Cao D H, Chang R P, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar

    [46]

    Noel N K, Stranks S D, Abate A, et al. 2014 Energy Environ. Sci. 7 3061Google Scholar

    [47]

    Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370Google Scholar

  • 图 1  初始器件结构

    Fig. 1.  Initial device structure.

    图 2  不同ETL材料和钙钛矿层的能带结构

    Fig. 2.  Bands alignment between different ETL materials and perovskite.

    图 3  电子准费米能级图

    Fig. 3.  Schematic diagram of electronic quasi-Fermi level.

    图 4  不同ETL材料对J-V特性及QE的影响 (a) 不同ETL材料对J-V特性的影响; (b)不同ETL材料对QE的影响

    Fig. 4.  Effects of different ETL materials on J-V characteristics and QE: (a) Effects of different ETL materials on J-V characteristics; (b) effects of different ETL materials on QE

    图 5  CBO示意图 (a) CBO为负值时的能带结构; (b) CBO为正值时的能带结构

    Fig. 5.  Diagram of CBO: (a) Band structure of negative CBO; (b) band structure of positive CBO.

    图 6  cliff和spike示意图 (a) cliff结构; (b) spike结构

    Fig. 6.  Schematic diagram of cliff and spike: (a) Cliff structure; (b) spike structure.

    图 7  能带图 (a)能带图全貌; (b) ETL和钙钛矿层界面势垒结构局部放大图

    Fig. 7.  Band diagram: (a) Overall band diagram; (b) partial diagram of interface barrier structure.

    图 8  不同HTL材料和钙钛矿层的能带结构

    Fig. 8.  Bands alignment between different HTL materials and perovskite.

    图 9  空穴准费米能级图 (a)空穴准费米能级图全貌; (b) HTL空穴准费米能级局部图

    Fig. 9.  Schematic diagram of hole quasi-Fermi level: (a) Diagram hole quasi-Fermi energy; (b) partial diagram of HTL hole quasi-Fermi level.

    图 10  不同HTL材料对QE和J-V特性的影响 (a) 不同HTL材料对QE的影响; (b)不同HTL材料对J-V特性的影响

    Fig. 10.  Effects of different HTL materials on QE and J-V characteristics: (a) Effects of different HTL materials on QE; (b) effects of different HTL materials on J-V characteristics.

    图 11  VBO示意图 (a) VBO为负值时的能带结构; (b) VBO为正值时的能带结构

    Fig. 11.  Diagram of VBO: (a) Band structure of negative VBO; (b) band structure of positive VBO.

    图 12  cliff和spike示意图 (a) cliff结构; (b) spike结构

    Fig. 12.  Schematic diagram of cliff and spike: (a) Cliff structure; (b) spike structure.

    图 13  能带图 (a)能带图全貌; (b)钙钛矿层和HTL界面势垒结构局部放大图

    Fig. 13.  Band diagram: (a) Overall band diagram; (b) partial diagram of interface barrier structure.

    图 14  钙钛矿层缺陷浓度对效率的影响

    Fig. 14.  Influence of defect density of perovskite layer on PCE.

    表 1  基本仿真参数

    Table 1.  Basic simulation parameters.

    ParameterSnO2:FTiO2MASnI3spiro-OMeTAD
    Thickness/nm500 [13]100 [21]500 [13]200 [18]
    Eg/eV3.5 [13]3.2 [18]1.3 [13]3.0 [20]
    χ/eV4.0 [13]3.9 [18]4.17 [13]2.45 [20]
    εr9.0 [13]9.0 [18]8.2 [13]3.0 [20]
    Nc/cm–31 × 1019 [13]1 × 1021 [18]1 × 1018 [13]1 × 1019 [21]
    Nv/cm–31 × 1019 [13]2 × 1020 [18]1 × 1018 [13]1 × 1019 [21]
    μn/(cm2·V·s–1)100 [13]20 [18]1.6 [13]0.0002 [20]
    μp/(cm2·V·s–1)25 [13]10 [18]1.6 [13]0.0002 [20]
    Nd/cm–32 × 1019 [13]1 × 1017 [18]0 [13]0 [20]
    Na/cm–30 [13]0 [18]1 × 1016 [13]2 × 1018 [20]
    Nt/cm–31 × 1015 [18]1 × 1015 [18]1 × 1015 [13]1 × 1015 [20]
    下载: 导出CSV

    表 2  不同ETL材料的参数

    Table 2.  Input parameters of the proposed ETL materials.

    ParameterC60CdSCd0.5Zn0.5SIGZOPCBMZnO
    Eg/eV1.7 [17]2.4 [25]2.8 [13]3.05 [18]2 [18]3.3 [17]
    χ/eV3.9 [17]4.2 [25]3.8 [13]4.16 [18]3.9 [18]4.1 [17]
    εr4.2 [17]10 [25]10 [13]10 [18]3.9 [18]9 [17]
    Nc/cm–38 × 1019 [17]2.2 × 1018 [25]1 × 1018 [13]5 × 1018 [18]2.5 × 1021 [18]4 × 1018 [17]
    Nv/cm–38 × 1019 [17]1.8 × 1019 [25]1 × 1018 [13]5 × 1018 [18]2.5 × 1021 [18]1 × 1019 [17]
    μn/(cm2·V·s–1)0.08 [17]100 [25]100 [13]15 [18]0.2 [18]100 [17]
    μp/(cm2·V·s–1)0.0035 [17]25 [25]25 [13]0.1 [18]0.2 [18]25 [17]
    Nd/cm–32.6 × 1018 [17]1 × 1017 [25]1 × 1017 [13]1 × 1018 [18]2.93 × 1017 [18]1 × 1018 [26]
    Na/cm–30 [17]0 [25]0 [13]0 [18]0 [18]0 [26]
    Nt/cm–31 × 1014 [17]1 × 1017 [25]1 × 1015 [13]1 × 1015 [18]1 × 1015 [18]1 × 1015 [26]
    下载: 导出CSV

    表 3  不同HTL材料的参数

    Table 3.  Input parameters of the proposed HTL materials.

    ParameterCu2OCuICuSCNMASnBr3NiOPEDOT:PSS
    Eg/eV2.17 [26]2.98 [18]3.4 [18]2.15 [13]3.8 [18]2.2 [18]
    χ/eV3.2 [26]2.1 [18]1.9 [18]3.39 [13]1.46 [18]2.9 [18]
    εr6.6 [20]6.5 [18]10 [18]8.2 [13]11.7 [20]3 [18]
    Nc/cm–32.5 × 1020 [20]2.8 × 1019 [18]1.7 × 1019 [18]1 × 1018 [13]2.5 × 1020 [20]2.2 × 1015 [18]
    Nv/cm–32.5 × 1020 [20]1 × 1019 [18]2.5 × 1021 [18]1 × 1018 [13]2.5 × 1020 [20]1.8 × 1018 [18]
    μn/(cm2·V·s–1)80 [20]0.00017 [18]0.0001 [18]1.6 [13]2.8 [20]0.02 [18]
    μp/(cm2·V·s–1)80 [20]0.0002 [18]0.1 [18]1.6 [13]2.8 [20]0.0002 [18]
    Nd/cm–30 [20]0 [18]0 [18]0 [13]0 [18]0 [18]
    Na/cm–31 × 1018 [26]1 × 1018 [18]1 × 1018 [18]1 × 1018 [13]1 × 1018 [18]3.17 × 1014 [18]
    Nt/cm–31 × 1015 [26]1 × 1015 [18]1 × 1014 [18]1 × 1015 [13]1 × 1014 [18]1 × 1015 [18]
    下载: 导出CSV

    表 4  不同ETL材料的PSC输出参数

    Table 4.  Effects of ETLs on output parameters of the PSCs.

    ParameterC60CdSCd0.5Zn0.5SIGZOPCBMTiO2ZnO
    Voc/V0.840.810.930.820.830.840.83
    Jsc/(mA·cm–2)21.7327.5029.3929.2724.8629.6429.58
    FF/%69.4762.6264.7363.9567.5369.2767.72
    PCE/%12.6614.0117.7015.3213.9217.2416.64
    下载: 导出CSV

    表 5  CBO、界面势垒结构及$E_{\rm{a}}^{{\rm{ETL}}}$的关系

    Table 5.  Relationship between CBO, barrier shape and $E_{\rm{a}}^{{\rm{ETL}}}$.

    ParameterC60CdSCd0.5Zn0.5SIGZOPCBMTiO2ZnO
    CBO/eV0.27–0.030.370.010.270.270.07
    Barrier shapespikecliffspikespikespikespikespike
    $E_{\rm{a}}^{{\rm{ETL}}}$/eV1.31.271.31.31.31.31.3
    下载: 导出CSV

    表 6  不同HTL材料的PSC输出参数

    Table 6.  Effect of HTL on output parameters of the PSCs.

    ParameterCu2OCuICuSCNMASnBr3NiOPEDOT:PSSspiro-OMeTAD
    Voc/V0.920.850.910.940.900.880.93
    Jsc/(mA·cm–2)28.7128.1828.4530.3528.3228.2129.39
    FF/%76.4974.3275.7476.6575.0473.3064.73
    PCE/%20.2817.7919.7121.5519.0418.1517.70
    下载: 导出CSV

    表 7  VBO、界面势垒结构及$E_{\rm{a}}^{{\rm{HTL}}}$的关系

    Table 7.  Relationship between VBO, barrier shapeand $E_{\rm{a}}^{{\rm{HTL}}}$.

    ParameterCu2OCuICuSCNMASnBr3NiOPEDOT:PSSspiro-OMeTAD
    VBO/eV–0.1–0.27–0.170.07–0.21–0.27–0.02
    Barrier shapecliffcliffcliffspikecliffcliffcliff
    $E_{\rm{a}}^{{\rm{HTL}}}$/eV1.21.031.131.31.091.031.28
    下载: 导出CSV

    表 8  不同结构的电池研究结果对比

    Table 8.  Comparison of research results of cells with different structures.

    Device structureCategoryPCE/%Device structureCategoryPCE/%
    SnO2/MAPbI3/spiro[38]experiment14.19TiO2/MAPbI3/CuSCN[47]simulation20
    TiO2/MAPbI3/spiro[43]experiment15.9Cu2O/MAPbI3/TiO2[20]simulation28
    TiO2/MAPbI3/spiro[44]experiment17.36ZnO/MAPbI3/Cu2O[26]simulation20
    ZnO/MAPbI3/spiro[40]simulation22.49TiO2/MAPbI3/CuI[47]simulation17.54
    ZnO/MAPbI3/P3HT[37]simulation18.76CdS/MAPbI3/spiro[42]simulation23.83
    TiO2/MAPbI3/CuGaO2[41]simulation23.42TiO2/MAPbI3/spiro[47]simulation22.35
    TiO2/MASnI3/spiro[46]experiment6.4PEDOT:PASS/MASnI3/PCBM[39]experiment6.03
    TiO2/MASnI3/spiro[45]experiment5.73Structure of this articlesimulation21.55
    下载: 导出CSV
  • [1]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151Google Scholar

    [2]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [3]

    梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 物理学报 69 057901Google Scholar

    Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901Google Scholar

    [4]

    Conings B, Drijkoningen J, Gauquelin N, et al. 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [5]

    Wang R, Mujahid M, Duan Y, Wang Z K, Xue J, Yang Y 2019 Adv. Funct. Mater. 29 1808843Google Scholar

    [6]

    Wang Q, Phung N, Di Girolamo D, Vivo P, Abate A 2019 Energy Environ. Sci. 12 865Google Scholar

    [7]

    Liang J, Liu J, Jin Z 2017 Solar RRL 1 1700086Google Scholar

    [8]

    Yang T C, Fiala P, Jeangros Q, Ballif C 2018 Joule 2 1421Google Scholar

    [9]

    Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Solar RRL 2 1700188Google Scholar

    [10]

    Song T, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Letters 2 897Google Scholar

    [11]

    Green MA, Ho-Baillie A, Snaith HJ 2014 Nat. Photonics 8 506Google Scholar

    [12]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [13]

    Baig F, Khattak Y H, Marí B, Beg S, Ahmed A, Khan K 2018 J. Electron. Mater. 47 5275Google Scholar

    [14]

    Chen M, Ju M, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar

    [15]

    Chakraborty K, Choudhury MG, Paul S 2019 Sol. Energy 194 886Google Scholar

    [16]

    Islam M A, Rahman K S, Misran H, Asim N, Hossain M S, Akhtaruzzaman M, Amin N 2019 Results Phys. 14 102518Google Scholar

    [17]

    Lakhdar N, Hima A 2020 Opt. Mater. 99 109517Google Scholar

    [18]

    Azri F, Meftah A, Sengouga N, Meftah A 2019 Sol. Energy 181 372Google Scholar

    [19]

    Sajid, Elseman A M, Ji J, Dou S, Huang H, Cui P, Wei D, Li M 2018 Chin. Phys. B 27 80Google Scholar

    [20]

    Minemoto T, Murata M 2014 Curr. Appl. Phys. 14 1428Google Scholar

    [21]

    Teimour R, Mohammadpour R 2018 Superlattices Microstruct. 118 116Google Scholar

    [22]

    Du H J, Wang W C, Zhu J Z 2016 Chin. Phys. B 25 108802Google Scholar

    [23]

    Chouhan A S, Jasti N P, Avasthi S 2018 Mater. Lett. 221 150Google Scholar

    [24]

    Huang S, Rui Z, Chi D, Bao D 2019 Journal of Semiconductors 40 19Google Scholar

    [25]

    Lin L Y, Jiang L Q, Qiu Y, Fan B D 2018 J. Phys. Chem. Solids 122 19Google Scholar

    [26]

    Lin L Y, Jiang L Q, Li P, Fan B D, Qiu Y 2019 J. Phys. Chem. Solids 124 205Google Scholar

    [27]

    Wang D, Wu C, Luo W, Guo X, Qu B, Xiao L, Chen Z 2018 ACS Appl. Energy Mater. 1 2215Google Scholar

    [28]

    Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8Google Scholar

    [29]

    Klenk R 2001 Thin Solid Films 387 135Google Scholar

    [30]

    Gloeckler M, Sites J 2005 Thin Solid Films 480 241Google Scholar

    [31]

    Minemoto T, Hashimoto Y, Satoh T, Negami T, Takakura H, Hamakawa Y 2001 J. Appl. Phys. 89 8327Google Scholar

    [32]

    Minemoto T, Hashimoto Y, Satoh T, et al. 2003 Sol. Energ. Mater. Sol. Cells 75 121Google Scholar

    [33]

    Torndahl T, Platzer-Bjorkman C, Kessler J, Edoff M 2007 Prog. Photovolt 15 225Google Scholar

    [34]

    Minemoto T, Matsui T, Takakura H, et al. 2001 Sol. Energ. Mater. Sol. Cells 67 83Google Scholar

    [35]

    Ryu S, Noh J H, Jeon N J, Chan Kim Y, Yang W S, Seo J, Seok S I 2014 Energy Environ. Sci. 7 2614Google Scholar

    [36]

    Tanaka K, Minemoto T, Takakura H 2009 Sol. Energy 83 477Google Scholar

    [37]

    Karimi E, Ghorashi S M B 2017 J. Nanophotonics 11 032510Google Scholar

    [38]

    蒙镜蓉, 李国龙, 索鑫磊, 张立来, 苏杭, 李婉, 王浩 2019 激光与光电子学进展 56 261

    Meng J R, Li G L, Suo X L, Zhang L L, Su H, Li W, Wang H 2019 L. & O. Progress 56 261

    [39]

    Gao F Q, Li C H, Qin L, Zhu L J, Huang X, Liu H, Liang L, Hou Y B, Lou Z D, Hu Y F, Teng F 2018 RSC Adv. 8 14025Google Scholar

    [40]

    Adhikari K R, Gurung S, Bhattarai B K, Soucase B M 2016 Phys. Status Solidi C 13 13Google Scholar

    [41]

    林灵燕, 范宝殿 2017 泉州师范学院学报 36 50

    Lin L Y, Fan B D 2017 J. Quanzhou Normal Univ. 36 50

    [42]

    Devi N, Parrey K A, Aziz A, Datta S 2018 J. Vac. Sci. Technol. B 36 105Google Scholar

    [43]

    孙亚平, 陈慧颖, 陈高玲, 王多发, 章天金 2018 湖北大学学报 40 518

    Sun Y P, Chen H Y, Chen G L, Wang D F, Zhang T J 2018 J. Hubei Univ. 40 518

    [44]

    李毅, 朱俊, 张旭辉, 戴松元 2019 太阳能学报 40 2630

    Li Y, Zhu J, Zhang X H, Dai S Y 2019 Acta Energ. Sol. Sin. 40 2630

    [45]

    Hao F, Stoumpos C C, Cao D H, Chang R P, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar

    [46]

    Noel N K, Stranks S D, Abate A, et al. 2014 Energy Environ. Sci. 7 3061Google Scholar

    [47]

    Hossain M I, Alharbi F H, Tabet N 2015 Sol. Energy 120 370Google Scholar

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] 方正, 张飞, 秦校军, 杨柳, 靳永斌, 周养盈, 王兴涛, 刘云, 谢立强, 魏展画. 减小边缘复合助力28%效率的四端钙钛矿/硅叠层太阳能电池. 物理学报, 2023, 72(5): 057302. doi: 10.7498/aps.72.20222209
    [3] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [4] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [5] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [7] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [8] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [9] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [10] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [11] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究. 物理学报, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [12] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响. 物理学报, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [13] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [14] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [15] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [16] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响. 物理学报, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [17] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管. 物理学报, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [18] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] 王 宇, 华玉林, 吴晓明, 张国辉, 惠娟利, 张丽娟, 刘 倩, 印寿根. 发光层和空穴传输层对白色电致发光器件性能的影响. 物理学报, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [20] 姜 燕, 杨盛谊, 张秀龙, 滕 枫, 徐 征, 侯延冰. 基于ZnSe的有机-无机异质结电致发光器件. 物理学报, 2006, 55(9): 4860-4864. doi: 10.7498/aps.55.4860
计量
  • 文章访问数:  10727
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-29
  • 修回日期:  2020-09-01
  • 上网日期:  2021-01-22
  • 刊出日期:  2021-02-05

/

返回文章
返回