搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯增强半导体态二氧化钒近场热辐射

王波 张纪红 李聪颖

引用本文:
Citation:

石墨烯增强半导体态二氧化钒近场热辐射

王波, 张纪红, 李聪颖

Enhancement of near-field thermal radiation of semiconductor vanadium dioxide covered by graphene

Wang Bo, Zhang Ji-Hong, Li Cong-Ying
PDF
HTML
导出引用
  • 本文基于涨落耗散定理和并矢格林函数求解麦克斯韦方程来研究两个半无限大平板的近场热辐射净热流, 提出了两个半无限大块状二氧化钒组成的V/V结构、石墨烯覆盖两个半无限大块状二氧化钒组成的GV/GV结构和石墨烯覆盖VO2薄膜组成的GV0/GV0结构, 深入研究了这三种结构中二氧化钒与石墨烯间的近场热辐射, 并分析了真空间距、二氧化钒薄膜厚度和石墨烯化学势等物理参量变化对近场热辐射的影响. 研究表明: 三种结构的近场热辐射均随间距增大而减小; 在真空间距为10 nm时, 由石墨烯覆盖的GV/GV结构的近场辐射热流比无石墨烯覆盖的V/V结构增强35倍, 耦合效果最好的是GV0/GV0结构, 该结构的近场辐射热流比GV/GV结构增强8.6倍; 在GV0/GV0结构中, 当二氧化钒薄膜厚度为30 nm时, 石墨烯化学势从0.1 eV增加到0.6 eV辐射热流会减小3.3倍. 本文系统研究了二氧化钒与石墨烯间相互耦合的近场热辐射, 对相关结构的近场热辐射实验和实际应用具有理论指导意义.
    Near-field thermal radiation refers to the radiation produced by two radiators in a narrow gap that is smaller than the characteristic wavelength. The studies of near-field thermal radiation began in the 1960s and 1970s. Some researchers have reported that near-filed thermal radiation can be enhanced by orders of magnitude higher than that of far-field radiation by photon tunneling and surface polariton. With the development and application of nanotechnology, the near-field heat radiation has developed into a research hotspot in the field of heat radiation. Recent studies have shown that the properties of near-field thermal radiation can be enhanced by optimizing the structures of radiators (covered by two-dimensional (2D) materials, such as graphene and black phosphorus), choosing radiation materials (hexagonal boron nitride, silicon dioxide, vanadium dioxide), and selecting appropriate physical parameters (chemical potential, vacuum distance, film thickness) of the radiator materials. According to the fluctuation dissipation theory and by solving the Maxwell equation and the green's function, in this article we report the near-field thermal radiation of the two half-infinite flats, including vanadium dioxide V/V, vanadium dioxide covered by graphene GV/GV and vanadium dioxide film covered by graphene GV0/GV0. The near-field thermal radiations in these structures are influenced by physical parameters, such as vacuum spacing, thickness of vanadium dioxide film and chemical potential of graphene. The results show that near-field thermal radiation of GV0/GV0 (38088.43 W/m2) is 8.6 times stronger than that of GV/GV (4426.73 W/m2, vacuum distance is 10 nm, chemical potential is 0.1 eV), and near-field thermal radiation of GV/GV (4426.73 W/m2) is 35 times stronger than that of V/V (127.21 W/m2, vacuum distance is 10 nm, chemical potential is 0.1 eV). For these three structures, thermal radiation decreases gradually by widening the vacuum distance. Moreover, thermal radiation also decreases by thickening vanadium dioxide film. While thermal radiation of GV0/GV0 decreases 3.34 times as chemical potential of graphene increases from 0.1 (38088.43 W/m2) to 0.6 eV (11399.80 W/m2). In this paper, the near-field heat radiation between vanadium dioxide and graphene is systematically investigated, which will give the guidance in the relevant experiment and practical applications of near-field heat radiation between vanadium dioxide and graphene.
      通信作者: 张纪红, zjh@ytu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604285)和山东省自然科学基金(批准号: ZR2016FQ11)资助的课题
      Corresponding author: Zhang Ji-Hong, zjh@ytu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604285) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016FQ11)
    [1]

    刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星 2020 物理学报 69 036501Google Scholar

    Liu Y, Pan D, Chen W, Wang W Q, Shen H, Xu H X 2020 Acta Phys. Sin. 69 036501Google Scholar

    [2]

    ShiK Z, Bao F L, He S L 2017 ACS photonics 4 971Google Scholar

    [3]

    Ilic O, Jablan M, Joannopoulos J D, Celanovic I, Buljan H 2012 Phys. Rev. B 85 155422Google Scholar

    [4]

    Ge L X, Xu Z J, Cang Y P, Gong K 2019 Opt. Express 27 A1109Google Scholar

    [5]

    赵启梅 2018 硕士学位论文 (南昌: 南昌大学)

    Zhao Q M 2018 M. A. Thesis (Nanchang: Nanchang University) (in Chinese)

    [6]

    Zhao B, Guizal B, Zhang Z M, Fan S H, Antezza M 2017 Phys. Rev. B 95 245437Google Scholar

    [7]

    Lim M, Lee S S, Lee B J 2013 Opt. Express 21 22173Google Scholar

    [8]

    Qazilbash M M, Brehm M, Andreev G O, Frenzel P C H, Chae B G, Kim B G, Yun S j, Kim H T, Balatsky A V, Shpyrko O G, Maple M B, Keilmann F, Basov D N 2009 Phys. Rev. B 79 075107Google Scholar

    [9]

    Manish K, Sunita R, Hyun H L 2019 J. Korean Phys. Soc. 75 519Google Scholar

    [10]

    Li S Y, Niklasson G A, Granqvist C G 2014 J. Appl. Phys. 115 053513Google Scholar

    [11]

    Choi H S, Ahn J S, Jung J H, Noh T W 1996 Phys. Rev. B 54 4621Google Scholar

    [12]

    Van Zwol P J, Joulain K, Abdallah P B, Chevrier J 2011 Phys. Rev. B 83 201404(RGoogle Scholar

    [13]

    Van Zwol P J, Ranno L, Chevrive J 2012 Phys. Rev. Lett. 108 234301Google Scholar

    [14]

    张卓敏著 (程强, 王志超, 张险, 周怀春译) 2007 微纳尺度传热 (北京: 清华大学出版社) 第258页

    Zhang Z M(translated by Cheng Q, Wang Z C, Zhang X, Zhou H C)2007 Nano/Microscale Heat Transfer (Beijing: Tsinghua University Press) p258 (in Chinese)

    [15]

    Yang Y, Basu S, Wang L P 2013 Appl. Phys. Lett. 103 163101Google Scholar

    [16]

    Barker A S, Verleur H W, Guggenheim H J 1966 Phys. Rev. Lett. 17 1286Google Scholar

    [17]

    Messina R, Ben-Abdallah P 2013 Sci. Rep. 3 1383Google Scholar

    [18]

    Joulain K, Mulet J P, Marquier F, Carminati R, Greffet J J 2005 Surf. Sci. Rep. 57 59Google Scholar

    [19]

    Liu X L, Zhang R Z, Zhang Z M 2014 ACS Photonics 1 785Google Scholar

    [20]

    Biehs S A, Tschkikin M, Ben A P 2012 Phys. Rev. Lett. 109 104301Google Scholar

    [21]

    Shi K Z, Liao R, Cao G J, Bao F L, He S L 2018 Opt. Express 26 A591Google Scholar

  • 图 1  (a)无石墨烯覆盖的近场热辐射模型; (b)石墨烯覆盖VO2薄膜的近场热辐射模型

    Fig. 1.  (a) The near-field thermal radiation between bulk VO2; (b) the near-field thermal radiation between VO2 films covered by graphene.

    图 2  (a) 真空间距对辐射热流的影响; (b) 真空间距d = 10 nm, 石墨烯化学势$\mu = 0.1$ eV时的光谱辐射通量

    Fig. 2.  (a) Heat flux in different structures at different vacuum spacing; (b) spectral heat flux with d = 10 nm and $\mu = 0.1$ eV.

    图 3  (a)−(e) $\mu = 0.1$ eV时光子隧穿概率的等值线图, 其中(a), (b)为 GV/GV结构, (c)−(e)为 GV0/GV0结构; (f) $\mu = 0.6$ eV时GV/GV结构的光子隧穿概率的等值线图

    Fig. 3.  (a)−(e) Photon tunneling probability at $\mu = 0.1$ eV: (a), (b) GV/GV structure; (c)−(e) GV0/GV0 structure; (f) photon tunneling probability at $\mu = 0.6$ eV.

    图 4  (a) 不同的石墨烯化学势情况下, 辐射热流随VO2薄膜厚度变化的曲线图; (b)不同VO2薄膜厚度时的光谱辐射通量

    Fig. 4.  (a) Heat flux at different graphene chemical potentials on different thickness of VO2 film; (b) spectral heat flux at different vanadium dioxide film thickness.

    图 5  GV0/GV0结构光子隧穿概率的等值线图 (a), (b) $\mu = 0.1$ eV; (c), (d) $\mu = 0.6$ eV

    Fig. 5.  Photon tunneling probability of GV0/GV0 structure: (a), (b) $\mu = 0.1$ eV; (c), (d) $\mu = 0.6$ eV.

    图 6  在石墨烯不同的化学势情况下, 真空间距对辐射热流的影响 (a)表示GV/GV结构; (b)表示GV0/GV0结构

    Fig. 6.  Heat flux with different vacuum spacing at different graphene chemical potentials: (a) GV/GV structure; (b) GV0/GV0structure.

  • [1]

    刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星 2020 物理学报 69 036501Google Scholar

    Liu Y, Pan D, Chen W, Wang W Q, Shen H, Xu H X 2020 Acta Phys. Sin. 69 036501Google Scholar

    [2]

    ShiK Z, Bao F L, He S L 2017 ACS photonics 4 971Google Scholar

    [3]

    Ilic O, Jablan M, Joannopoulos J D, Celanovic I, Buljan H 2012 Phys. Rev. B 85 155422Google Scholar

    [4]

    Ge L X, Xu Z J, Cang Y P, Gong K 2019 Opt. Express 27 A1109Google Scholar

    [5]

    赵启梅 2018 硕士学位论文 (南昌: 南昌大学)

    Zhao Q M 2018 M. A. Thesis (Nanchang: Nanchang University) (in Chinese)

    [6]

    Zhao B, Guizal B, Zhang Z M, Fan S H, Antezza M 2017 Phys. Rev. B 95 245437Google Scholar

    [7]

    Lim M, Lee S S, Lee B J 2013 Opt. Express 21 22173Google Scholar

    [8]

    Qazilbash M M, Brehm M, Andreev G O, Frenzel P C H, Chae B G, Kim B G, Yun S j, Kim H T, Balatsky A V, Shpyrko O G, Maple M B, Keilmann F, Basov D N 2009 Phys. Rev. B 79 075107Google Scholar

    [9]

    Manish K, Sunita R, Hyun H L 2019 J. Korean Phys. Soc. 75 519Google Scholar

    [10]

    Li S Y, Niklasson G A, Granqvist C G 2014 J. Appl. Phys. 115 053513Google Scholar

    [11]

    Choi H S, Ahn J S, Jung J H, Noh T W 1996 Phys. Rev. B 54 4621Google Scholar

    [12]

    Van Zwol P J, Joulain K, Abdallah P B, Chevrier J 2011 Phys. Rev. B 83 201404(RGoogle Scholar

    [13]

    Van Zwol P J, Ranno L, Chevrive J 2012 Phys. Rev. Lett. 108 234301Google Scholar

    [14]

    张卓敏著 (程强, 王志超, 张险, 周怀春译) 2007 微纳尺度传热 (北京: 清华大学出版社) 第258页

    Zhang Z M(translated by Cheng Q, Wang Z C, Zhang X, Zhou H C)2007 Nano/Microscale Heat Transfer (Beijing: Tsinghua University Press) p258 (in Chinese)

    [15]

    Yang Y, Basu S, Wang L P 2013 Appl. Phys. Lett. 103 163101Google Scholar

    [16]

    Barker A S, Verleur H W, Guggenheim H J 1966 Phys. Rev. Lett. 17 1286Google Scholar

    [17]

    Messina R, Ben-Abdallah P 2013 Sci. Rep. 3 1383Google Scholar

    [18]

    Joulain K, Mulet J P, Marquier F, Carminati R, Greffet J J 2005 Surf. Sci. Rep. 57 59Google Scholar

    [19]

    Liu X L, Zhang R Z, Zhang Z M 2014 ACS Photonics 1 785Google Scholar

    [20]

    Biehs S A, Tschkikin M, Ben A P 2012 Phys. Rev. Lett. 109 104301Google Scholar

    [21]

    Shi K Z, Liao R, Cao G J, Bao F L, He S L 2018 Opt. Express 26 A591Google Scholar

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [3] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰. 薄膜厚度对射频磁控溅射${\boldsymbol{\beta}}$-Ga2O3薄膜光电性能的影响. 物理学报, 2022, 71(4): 048501. doi: 10.7498/aps.71.20211744
    [4] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构. 物理学报, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [5] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [6] 李秀华, 张敏. 薄膜厚度对射频磁控溅射β-Ga2O3薄膜光电性能的影响*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211744
    [7] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [8] 郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏. 具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管. 物理学报, 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [9] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [10] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [11] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [12] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [13] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [14] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射. 物理学报, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [15] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [16] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能. 物理学报, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [17] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性. 物理学报, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [18] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [19] 岂云开, 顾建军, 刘力虎, 张海峰, 徐芹, 孙会元. Al掺杂ZnO薄膜的厚度对其结构及磁学性能的影响. 物理学报, 2011, 60(6): 067502. doi: 10.7498/aps.60.067502
    [20] 张国勇, 张鹏翔. 测量高温超导YBCO薄膜厚度的一种新方法. 物理学报, 2001, 50(8): 1451-1455. doi: 10.7498/aps.50.1451
计量
  • 文章访问数:  4168
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-10-02
  • 上网日期:  2021-02-25
  • 刊出日期:  2021-03-05

/

返回文章
返回