-
近期南海远程声传播实验数据的处理分析表明在深海不完整声道中声道轴以下存在一种会聚区, 该会聚区相比于海面附近的上反转点会聚区在远距离处具有更高的会聚增益. 本文利用射线简正波理论确定了水中反转型焦散线和海面反射型焦散线位置, 对比发现实验中观测到的深海大深度会聚区位置与水中反转型焦散线位置一致, 证明该会聚区是由大量简正波同相叠加形成的下反转点会聚区, 其在深海声道轴以下的一定深度范围内都具有会聚效应, 研究了该会聚区的形成条件以及声源深度变化对会聚区焦散结构的影响, 对比了远距离处上下反转点会聚区的传播损失以及会聚区宽度, 分析表明第七个下反转点会聚区的会聚增益仍不小于10 dB, 研究了声速垂直结构变化对下反转点会聚区的影响, 理论分析结果与实验数据吻合较好.In a deep sea sound channel, rays will bend due to the sound speed profile, and convergence zone will occur when the rays are intensive. Transmission loss in the convergence zone is smaller and it is conducive to acoustic detection and communication. Therefore the study of acoustic characteristics in convergence zone is always the focus of deep-sea acoustics. A long-range sound propagation experiment is conducted in the South China Sea. An equivalent broadband explosive sound source of 1 kg is placed at a depth of 200 m, and the hydrophone receives the data at 3146 m far. The processing and analysis of the experimental data indicate that there is a convergence zone below the sound channel axis in the incomplete deep channel. Compared with the upper turning point convergence zone near the surface, this convergence zone has a high convergence gain at a long distance. The caustic lines of refracted type and refracted surface-refleted type are determined by means of ray-normal mode theory. It is found that the location of the deep convergence zone observed in the experiment is consistent with the position of the refracted caustic line. It is proved that the convergence zone is a lower turning point convergence zone formed by the superposition of a large number of normal modes in the same phase, and it has a convergence effect at a certain depth below the sound channel axis in the deep sea. The formation conditions of the convergence zone and the influence of sound source depth on the caustic structure of the convergence zone are studied. The comparisons of the transmission loss and the width between the upper and lower turning point convergence zone at a long distance aremade. The analysis shows that the convergence gain in the seventh lower turning point convergence zone is still no less than 10 dB. The influence of the vertical structure of sound velocity on the lower turning point convergence zone is studied. The theoretical analysis results are in good agreement with the experimental data.
-
Keywords:
- convergence effect /
- caustics /
- lower turning point /
- transmission loss
[1] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (NewYork: Springer-Verlag) pp16, 175
[2] Woezel J L, Ewing M 1948 Geol. Soc. Amer. Memoirs 27 1
[3] Brekhovskikh L M 1948 Dokl. Akad. Nauk. SSSR 69 157
[4] Berman A, Clay C S, Frosch R A, Sherry H B 1959 J. Acoust. Soc. Am. 31 838
[5] Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar
[6] Urick R J 1965 J. Acoust. Soc. Am. 38 348Google Scholar
[7] 张仁和 1980 声学学报 1 28
Zhang R H 1980 Acta Acust. 1 28
[8] 张仁和 1982 声学学报 2 75
Zhang R H 1982 Acta Acust. 2 75
[9] 龚敏, 肖金泉, 王孟新, 吴寅庚, 黄德华 1987 声学学报 6 417
Gong M, Xiao J Q, Wang M X, Wu Y G, Huang D H 1987 Acta Acust. 6 417
[10] 庄益夫, 张旭, 刘艳 2013 海洋通报 1 46
Zhuang Y F, Zhang X, Liu Y 2013 Marin Sci. Bull. 1 46
[11] 李文, 李整林 2016 中国科学: 物理学 力学 天文学 46 094303Google Scholar
Li W, Li Z L 2016 Sci. Sin.-Phys. Mech. Astron. 46 094303Google Scholar
[12] 张仁和, 孙庚辰, 雷良颖, 周坚力 1981 声学学报 3 198
Zhang R H, Sun G C, Lei L Y, Zhou J L 1981 Acta Acust. 3 198
[13] 胡治国, 李整林, 秦继兴, 任云, 张仁和 2016 中国科学: 物理学 力学 天文学 46 094304Google Scholar
Hu Z G, Li Z L, Qin J X, Ren Y, Zhang R H 2016 Sci. Sin.-Phys. Mech. Astron. 46 094304Google Scholar
[14] 范培勤, 笪良龙, 李玉阳 2012 海洋技术 4 23
Fan P Q, Da L L, Li Y Y 2012 Ocean Technol. 4 23
[15] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴 2019 物理学报 68 014301Google Scholar
Zhang P, Li Z L, Wu L X, Zhang R H, Qin J X 2019 Acta Phys. Sin. 68 014301Google Scholar
[16] Raphael D T 1974 J. Acoust. Soc. Am. 56 416Google Scholar
[17] Sachs D A, Silbiger A 1971 J. Acoust. Soc. Am. 49 824Google Scholar
[18] Blatstein I M 1971 J. Acoust. Soc. Am. 49 1568Google Scholar
[19] Duda T F, Bowlin J B 1994 J. Acoust. Soc. Am. 96 1033Google Scholar
[20] Bongiovanni K P, Siegmann W L, Ko D S 1996 J. Acoust. Soc. Am. 100 3033Google Scholar
[21] Tindle C T 2002 J. Acoust. Soc. Am. 112 464Google Scholar
[22] Ainslie M A, Robins A J, Simons D G 2004 J. Acoust. Soc. Am. 115 1449Google Scholar
[23] White A W, Henyey F S, Andrew R K, Mercer J A, Worcester P F, Dzieciuch M A, Colosi J A 2016 J. Acoust. Soc. Am. 140 3952Google Scholar
[24] Heaney K D, Baggeroer A B, D’Spain G L, Becker K M, Murray J J, Worcester P F, Dzieciuch M A, Mercer J, Andrew R 2009 Proceedings of the 3rd International Conference & Exhibition on Underwater Acoustic Measurements: Technologies & Results (UAM’09) Napflion, Greece, June 21−26, 2009 p121
[25] Stephen R 2011 Woods Hole Oceanographic Institution Technical Report WHOI-2011-04.
[26] 徐传秀 2017 博士学位论文 (哈尔滨: 哈尔滨工程大学)
Xu C X 2017 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)
-
图 8 不同声速剖面传播损失对比图 (a) 完整声道; (b) 不完整声道声源深度声速小于海底声速; (c) 不完整声道声源深度声速大于海底声速
Fig. 8. Comparisons of transmission losses at different sound speed profile: (a) Complete channel; (b) incomplete channel with source depth sound speed less than bottom sound speed; (c) incomplete channel with source depth sound speed greater than bottom sound speed.
图 9 不同声源深度时RR型声线所形成的焦散线结构示意图, 实线为正角度出射声线所形成的焦散线, 虚线为负角度出射声线所形成的焦散线 (a) 声源深度100 m; (b) 声源深度200 m; (c) 声源深度500 m
Fig. 9. Schematic diagram of the structure of caustic lines formed by RR type rays at different source depths. The full line is the caustic line formed by the positive angle of departure, and the imaginary line is the caustic line formed by the negative angle of departure: (a) 100 m; (b) 200 m; (c) 500 m.
-
[1] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (NewYork: Springer-Verlag) pp16, 175
[2] Woezel J L, Ewing M 1948 Geol. Soc. Amer. Memoirs 27 1
[3] Brekhovskikh L M 1948 Dokl. Akad. Nauk. SSSR 69 157
[4] Berman A, Clay C S, Frosch R A, Sherry H B 1959 J. Acoust. Soc. Am. 31 838
[5] Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar
[6] Urick R J 1965 J. Acoust. Soc. Am. 38 348Google Scholar
[7] 张仁和 1980 声学学报 1 28
Zhang R H 1980 Acta Acust. 1 28
[8] 张仁和 1982 声学学报 2 75
Zhang R H 1982 Acta Acust. 2 75
[9] 龚敏, 肖金泉, 王孟新, 吴寅庚, 黄德华 1987 声学学报 6 417
Gong M, Xiao J Q, Wang M X, Wu Y G, Huang D H 1987 Acta Acust. 6 417
[10] 庄益夫, 张旭, 刘艳 2013 海洋通报 1 46
Zhuang Y F, Zhang X, Liu Y 2013 Marin Sci. Bull. 1 46
[11] 李文, 李整林 2016 中国科学: 物理学 力学 天文学 46 094303Google Scholar
Li W, Li Z L 2016 Sci. Sin.-Phys. Mech. Astron. 46 094303Google Scholar
[12] 张仁和, 孙庚辰, 雷良颖, 周坚力 1981 声学学报 3 198
Zhang R H, Sun G C, Lei L Y, Zhou J L 1981 Acta Acust. 3 198
[13] 胡治国, 李整林, 秦继兴, 任云, 张仁和 2016 中国科学: 物理学 力学 天文学 46 094304Google Scholar
Hu Z G, Li Z L, Qin J X, Ren Y, Zhang R H 2016 Sci. Sin.-Phys. Mech. Astron. 46 094304Google Scholar
[14] 范培勤, 笪良龙, 李玉阳 2012 海洋技术 4 23
Fan P Q, Da L L, Li Y Y 2012 Ocean Technol. 4 23
[15] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴 2019 物理学报 68 014301Google Scholar
Zhang P, Li Z L, Wu L X, Zhang R H, Qin J X 2019 Acta Phys. Sin. 68 014301Google Scholar
[16] Raphael D T 1974 J. Acoust. Soc. Am. 56 416Google Scholar
[17] Sachs D A, Silbiger A 1971 J. Acoust. Soc. Am. 49 824Google Scholar
[18] Blatstein I M 1971 J. Acoust. Soc. Am. 49 1568Google Scholar
[19] Duda T F, Bowlin J B 1994 J. Acoust. Soc. Am. 96 1033Google Scholar
[20] Bongiovanni K P, Siegmann W L, Ko D S 1996 J. Acoust. Soc. Am. 100 3033Google Scholar
[21] Tindle C T 2002 J. Acoust. Soc. Am. 112 464Google Scholar
[22] Ainslie M A, Robins A J, Simons D G 2004 J. Acoust. Soc. Am. 115 1449Google Scholar
[23] White A W, Henyey F S, Andrew R K, Mercer J A, Worcester P F, Dzieciuch M A, Colosi J A 2016 J. Acoust. Soc. Am. 140 3952Google Scholar
[24] Heaney K D, Baggeroer A B, D’Spain G L, Becker K M, Murray J J, Worcester P F, Dzieciuch M A, Mercer J, Andrew R 2009 Proceedings of the 3rd International Conference & Exhibition on Underwater Acoustic Measurements: Technologies & Results (UAM’09) Napflion, Greece, June 21−26, 2009 p121
[25] Stephen R 2011 Woods Hole Oceanographic Institution Technical Report WHOI-2011-04.
[26] 徐传秀 2017 博士学位论文 (哈尔滨: 哈尔滨工程大学)
Xu C X 2017 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)
计量
- 文章访问数: 8073
- PDF下载量: 165
- 被引次数: 0