搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海不完整声道下反转点会聚区研究

朴胜春 栗子洋 王笑寒 张明辉

引用本文:
Citation:

深海不完整声道下反转点会聚区研究

朴胜春, 栗子洋, 王笑寒, 张明辉

Lower turning point convegence zone in deep water with an incomplete channel

Piao Sheng-Chun, Li Zi-Yang, Wang Xiao-Han, Zhang Ming-Hui
PDF
HTML
导出引用
  • 近期南海远程声传播实验数据的处理分析表明在深海不完整声道中声道轴以下存在一种会聚区, 该会聚区相比于海面附近的上反转点会聚区在远距离处具有更高的会聚增益. 本文利用射线简正波理论确定了水中反转型焦散线和海面反射型焦散线位置, 对比发现实验中观测到的深海大深度会聚区位置与水中反转型焦散线位置一致, 证明该会聚区是由大量简正波同相叠加形成的下反转点会聚区, 其在深海声道轴以下的一定深度范围内都具有会聚效应, 研究了该会聚区的形成条件以及声源深度变化对会聚区焦散结构的影响, 对比了远距离处上下反转点会聚区的传播损失以及会聚区宽度, 分析表明第七个下反转点会聚区的会聚增益仍不小于10 dB, 研究了声速垂直结构变化对下反转点会聚区的影响, 理论分析结果与实验数据吻合较好.
    In a deep sea sound channel, rays will bend due to the sound speed profile, and convergence zone will occur when the rays are intensive. Transmission loss in the convergence zone is smaller and it is conducive to acoustic detection and communication. Therefore the study of acoustic characteristics in convergence zone is always the focus of deep-sea acoustics. A long-range sound propagation experiment is conducted in the South China Sea. An equivalent broadband explosive sound source of 1 kg is placed at a depth of 200 m, and the hydrophone receives the data at 3146 m far. The processing and analysis of the experimental data indicate that there is a convergence zone below the sound channel axis in the incomplete deep channel. Compared with the upper turning point convergence zone near the surface, this convergence zone has a high convergence gain at a long distance. The caustic lines of refracted type and refracted surface-refleted type are determined by means of ray-normal mode theory. It is found that the location of the deep convergence zone observed in the experiment is consistent with the position of the refracted caustic line. It is proved that the convergence zone is a lower turning point convergence zone formed by the superposition of a large number of normal modes in the same phase, and it has a convergence effect at a certain depth below the sound channel axis in the deep sea. The formation conditions of the convergence zone and the influence of sound source depth on the caustic structure of the convergence zone are studied. The comparisons of the transmission loss and the width between the upper and lower turning point convergence zone at a long distance aremade. The analysis shows that the convergence gain in the seventh lower turning point convergence zone is still no less than 10 dB. The influence of the vertical structure of sound velocity on the lower turning point convergence zone is studied. The theoretical analysis results are in good agreement with the experimental data.
      通信作者: 王笑寒, wangxiaohan@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11234002)和国防科工局稳定支持项目(批准号: JCKYS2020604SSJS004)资助的课题
      Corresponding author: Wang Xiao-Han, wangxiaohan@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11234002) and the Stability Support Program of the Bureau of National Defense Science, Technology and Industry, China (Grant No. JCKYS2020604SSJS004)
    [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (NewYork: Springer-Verlag) pp16, 175

    [2]

    Woezel J L, Ewing M 1948 Geol. Soc. Amer. Memoirs 27 1

    [3]

    Brekhovskikh L M 1948 Dokl. Akad. Nauk. SSSR 69 157

    [4]

    Berman A, Clay C S, Frosch R A, Sherry H B 1959 J. Acoust. Soc. Am. 31 838

    [5]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar

    [6]

    Urick R J 1965 J. Acoust. Soc. Am. 38 348Google Scholar

    [7]

    张仁和 1980 声学学报 1 28

    Zhang R H 1980 Acta Acust. 1 28

    [8]

    张仁和 1982 声学学报 2 75

    Zhang R H 1982 Acta Acust. 2 75

    [9]

    龚敏, 肖金泉, 王孟新, 吴寅庚, 黄德华 1987 声学学报 6 417

    Gong M, Xiao J Q, Wang M X, Wu Y G, Huang D H 1987 Acta Acust. 6 417

    [10]

    庄益夫, 张旭, 刘艳 2013 海洋通报 1 46

    Zhuang Y F, Zhang X, Liu Y 2013 Marin Sci. Bull. 1 46

    [11]

    李文, 李整林 2016 中国科学: 物理学 力学 天文学 46 094303Google Scholar

    Li W, Li Z L 2016 Sci. Sin.-Phys. Mech. Astron. 46 094303Google Scholar

    [12]

    张仁和, 孙庚辰, 雷良颖, 周坚力 1981 声学学报 3 198

    Zhang R H, Sun G C, Lei L Y, Zhou J L 1981 Acta Acust. 3 198

    [13]

    胡治国, 李整林, 秦继兴, 任云, 张仁和 2016 中国科学: 物理学 力学 天文学 46 094304Google Scholar

    Hu Z G, Li Z L, Qin J X, Ren Y, Zhang R H 2016 Sci. Sin.-Phys. Mech. Astron. 46 094304Google Scholar

    [14]

    范培勤, 笪良龙, 李玉阳 2012 海洋技术 4 23

    Fan P Q, Da L L, Li Y Y 2012 Ocean Technol. 4 23

    [15]

    张鹏, 李整林, 吴立新, 张仁和, 秦继兴 2019 物理学报 68 014301Google Scholar

    Zhang P, Li Z L, Wu L X, Zhang R H, Qin J X 2019 Acta Phys. Sin. 68 014301Google Scholar

    [16]

    Raphael D T 1974 J. Acoust. Soc. Am. 56 416Google Scholar

    [17]

    Sachs D A, Silbiger A 1971 J. Acoust. Soc. Am. 49 824Google Scholar

    [18]

    Blatstein I M 1971 J. Acoust. Soc. Am. 49 1568Google Scholar

    [19]

    Duda T F, Bowlin J B 1994 J. Acoust. Soc. Am. 96 1033Google Scholar

    [20]

    Bongiovanni K P, Siegmann W L, Ko D S 1996 J. Acoust. Soc. Am. 100 3033Google Scholar

    [21]

    Tindle C T 2002 J. Acoust. Soc. Am. 112 464Google Scholar

    [22]

    Ainslie M A, Robins A J, Simons D G 2004 J. Acoust. Soc. Am. 115 1449Google Scholar

    [23]

    White A W, Henyey F S, Andrew R K, Mercer J A, Worcester P F, Dzieciuch M A, Colosi J A 2016 J. Acoust. Soc. Am. 140 3952Google Scholar

    [24]

    Heaney K D, Baggeroer A B, D’Spain G L, Becker K M, Murray J J, Worcester P F, Dzieciuch M A, Mercer J, Andrew R 2009 Proceedings of the 3rd International Conference & Exhibition on Underwater Acoustic Measurements: Technologies & Results (UAM’09) Napflion, Greece, June 21−26, 2009 p121

    [25]

    Stephen R 2011 Woods Hole Oceanographic Institution Technical Report WHOI-2011-04.

    [26]

    徐传秀 2017 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Xu C X 2017 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

  • 图 1  200 Hz时声压传播损失曲线与实验数据对比图[26]

    Fig. 1.  Comparison diagram of transmission loss and experimental data at 200 Hz[26].

    图 2  实验海区声速剖面分布

    Fig. 2.  Sound speed profile in experiment area.

    图 3  频率平均传播损失伪彩图

    Fig. 3.  Pseudo color map of transmission loss with frequency averaged.

    图 4  三类声线示意图

    Fig. 4.  Schematic diagram of three kinds of rays.

    图 5  RR型声线所形成的焦散线与传播损失伪彩图对比

    Fig. 5.  Comparisons of caustics formed by refracted rays and pseudo color map of transmission loss.

    图 6  3146 m接收深度时RR型声线所对应的简正波归一化幅值

    Fig. 6.  Normalized modal amplitudes, with receiver at 3146 m.

    图 7  $\Delta n$阶简正波相位差均值

    Fig. 7.  The mean value of the phase difference of $\Delta n$ normal modes.

    图 8  不同声速剖面传播损失对比图 (a) 完整声道; (b) 不完整声道声源深度声速小于海底声速; (c) 不完整声道声源深度声速大于海底声速

    Fig. 8.  Comparisons of transmission losses at different sound speed profile: (a) Complete channel; (b) incomplete channel with source depth sound speed less than bottom sound speed; (c) incomplete channel with source depth sound speed greater than bottom sound speed.

    图 9  不同声源深度时RR型声线所形成的焦散线结构示意图, 实线为正角度出射声线所形成的焦散线, 虚线为负角度出射声线所形成的焦散线 (a) 声源深度100 m; (b) 声源深度200 m; (c) 声源深度500 m

    Fig. 9.  Schematic diagram of the structure of caustic lines formed by RR type rays at different source depths. The full line is the caustic line formed by the positive angle of departure, and the imaginary line is the caustic line formed by the negative angle of departure: (a) 100 m; (b) 200 m; (c) 500 m.

    图 10  接收深度4000 m传播损失图像 (a) 0−450 km; (b) 第7个下反转点会聚区

    Fig. 10.  Transmission loss with receiver depth at 4000 m: (a) 0−450 km; (b) enlarge view of the 7th lower turning point convergence zone.

    图 11  127与3500 m接收深度传播损失对比 (a) 0−450 km; (b) 第7个会聚区处

    Fig. 11.  Comparison of transmission losses with receiver depth at 127 m and 3500 m: (a) 0−450 km; (b) the 7th convergence zone.

    图 12  冬夏声速剖面下反转点会聚区焦散线对比图 (a) 夏季; (b) 冬季

    Fig. 12.  Comparisons of caustics at lower turning point convergence zone in summer and winter: (a) Summer; (b) winter.

  • [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (NewYork: Springer-Verlag) pp16, 175

    [2]

    Woezel J L, Ewing M 1948 Geol. Soc. Amer. Memoirs 27 1

    [3]

    Brekhovskikh L M 1948 Dokl. Akad. Nauk. SSSR 69 157

    [4]

    Berman A, Clay C S, Frosch R A, Sherry H B 1959 J. Acoust. Soc. Am. 31 838

    [5]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456Google Scholar

    [6]

    Urick R J 1965 J. Acoust. Soc. Am. 38 348Google Scholar

    [7]

    张仁和 1980 声学学报 1 28

    Zhang R H 1980 Acta Acust. 1 28

    [8]

    张仁和 1982 声学学报 2 75

    Zhang R H 1982 Acta Acust. 2 75

    [9]

    龚敏, 肖金泉, 王孟新, 吴寅庚, 黄德华 1987 声学学报 6 417

    Gong M, Xiao J Q, Wang M X, Wu Y G, Huang D H 1987 Acta Acust. 6 417

    [10]

    庄益夫, 张旭, 刘艳 2013 海洋通报 1 46

    Zhuang Y F, Zhang X, Liu Y 2013 Marin Sci. Bull. 1 46

    [11]

    李文, 李整林 2016 中国科学: 物理学 力学 天文学 46 094303Google Scholar

    Li W, Li Z L 2016 Sci. Sin.-Phys. Mech. Astron. 46 094303Google Scholar

    [12]

    张仁和, 孙庚辰, 雷良颖, 周坚力 1981 声学学报 3 198

    Zhang R H, Sun G C, Lei L Y, Zhou J L 1981 Acta Acust. 3 198

    [13]

    胡治国, 李整林, 秦继兴, 任云, 张仁和 2016 中国科学: 物理学 力学 天文学 46 094304Google Scholar

    Hu Z G, Li Z L, Qin J X, Ren Y, Zhang R H 2016 Sci. Sin.-Phys. Mech. Astron. 46 094304Google Scholar

    [14]

    范培勤, 笪良龙, 李玉阳 2012 海洋技术 4 23

    Fan P Q, Da L L, Li Y Y 2012 Ocean Technol. 4 23

    [15]

    张鹏, 李整林, 吴立新, 张仁和, 秦继兴 2019 物理学报 68 014301Google Scholar

    Zhang P, Li Z L, Wu L X, Zhang R H, Qin J X 2019 Acta Phys. Sin. 68 014301Google Scholar

    [16]

    Raphael D T 1974 J. Acoust. Soc. Am. 56 416Google Scholar

    [17]

    Sachs D A, Silbiger A 1971 J. Acoust. Soc. Am. 49 824Google Scholar

    [18]

    Blatstein I M 1971 J. Acoust. Soc. Am. 49 1568Google Scholar

    [19]

    Duda T F, Bowlin J B 1994 J. Acoust. Soc. Am. 96 1033Google Scholar

    [20]

    Bongiovanni K P, Siegmann W L, Ko D S 1996 J. Acoust. Soc. Am. 100 3033Google Scholar

    [21]

    Tindle C T 2002 J. Acoust. Soc. Am. 112 464Google Scholar

    [22]

    Ainslie M A, Robins A J, Simons D G 2004 J. Acoust. Soc. Am. 115 1449Google Scholar

    [23]

    White A W, Henyey F S, Andrew R K, Mercer J A, Worcester P F, Dzieciuch M A, Colosi J A 2016 J. Acoust. Soc. Am. 140 3952Google Scholar

    [24]

    Heaney K D, Baggeroer A B, D’Spain G L, Becker K M, Murray J J, Worcester P F, Dzieciuch M A, Mercer J, Andrew R 2009 Proceedings of the 3rd International Conference & Exhibition on Underwater Acoustic Measurements: Technologies & Results (UAM’09) Napflion, Greece, June 21−26, 2009 p121

    [25]

    Stephen R 2011 Woods Hole Oceanographic Institution Technical Report WHOI-2011-04.

    [26]

    徐传秀 2017 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Xu C X 2017 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

  • [1] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法. 物理学报, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [4] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [5] 郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETRTEAM. 中国聚变工程试验堆上新经典撕裂模和纵场波纹扰动叠加效应对alpha粒子损失影响的数值模拟. 物理学报, 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [6] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [7] 赵海龙, 肖波, 王刚华, 王强, 阚明先, 段书超, 谢龙, 邓建军. 磁化套筒惯性聚变中端面损失效应的一维唯象模型与影响分析. 物理学报, 2021, 70(6): 065202. doi: 10.7498/aps.70.20201587
    [8] 任波, 佘彦超, 徐小凤, 叶伏秋. 高阶效应下对称三量子点系统中光孤子稳定性研究. 物理学报, 2021, 70(22): 224205. doi: 10.7498/aps.70.20210942
    [9] 李梦竹, 李整林, 周纪浔, 张仁和. 一种低声速沉积层海底参数声学反演方法. 物理学报, 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [10] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [11] 李晟昊, 李整林, 李文, 秦继兴. 深海海底山环境下声传播水平折射效应研究. 物理学报, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [12] 闻远辉, 陈钰杰, 余思远. 基于焦散线方法的自加速光束设计. 物理学报, 2017, 66(14): 144210. doi: 10.7498/aps.66.144210
    [13] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [14] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响. 物理学报, 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [15] 罗旭东, 牛胜利, 左应红. 典型甚低频电磁波对辐射带高能电子的散射损失效应. 物理学报, 2015, 64(6): 069401. doi: 10.7498/aps.64.069401
    [16] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [17] 吴宇航, 郑宁, 文平平, 李粮生, 史庆藩, 孙刚. 准二维二元混合颗粒动态循环反转分层的体积效应. 物理学报, 2011, 60(2): 024501. doi: 10.7498/aps.60.024501
    [18] 杨欢, 张穗萌, 吴兴举. 大能量损失几何条件下末态屏蔽效应和交换效应的理论研究. 物理学报, 2009, 58(10): 6938-6945. doi: 10.7498/aps.58.6938
    [19] 杨 欢, 高 矿, 张穗萌. 大能量损失小动量转移几何条件下氦原子(e, 2e)反应的理论研究. 物理学报, 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [20] 张汉壮, 高锦岳. 光场的空间横向效应对无粒子数反转光放大增益的影响. 物理学报, 1997, 46(12): 2330-2343. doi: 10.7498/aps.46.2330
计量
  • 文章访问数:  8073
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-21
  • 修回日期:  2020-09-18
  • 上网日期:  2021-01-13
  • 刊出日期:  2021-01-20

/

返回文章
返回