搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光学频率梳的超低噪声微波频率产生

邵晓东 韩海年 魏志义

引用本文:
Citation:

基于光学频率梳的超低噪声微波频率产生

邵晓东, 韩海年, 魏志义

Ultra-low noise microwave frequency generation based on optical frequency comb

Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi
PDF
HTML
导出引用
  • 低噪声的微波频率在雷达, 长基线干涉仪等领域有重要应用. 基于光学频率梳产生的微波信号的相位噪声在1 Hz频偏处低于–100 dBc/Hz, 在高频( > 100 kHz)处低于–170 dBc/Hz, 是目前所有的微波频率产生技术中噪声最低的. 文章介绍了光学频率梳产生微波频率的基本原理, 对基于光梳产生的微波频率信号的各类噪声和抑制噪声的技术进行了分析和总结. 随后对低噪声的测量方法进行介绍, 并展示了几种典型的微波频率产生实验装置和结果. 随着光学频率梳和噪声抑制技术的不断提升, 基于光梳的极低噪声微波频率源将有更广泛的应用前景和应用领域.
    Low noise microwave frequency has important applications in radar, long baseline interferometer and other fields. The phase noise of microwave signal generated by optical frequency comb is lower than –100 dBc/Hz at 1 Hz frequency offset and –170 dBc/ Hz at high frequencies (> 100 kHz), which is the lowest in the noise produced by all existing microwave frequency generation technologies. This paper introduces the basic principle of optical frequency comb generating microwave frequency, analyzes and summarizes various kinds of noise of microwave frequency signals and noise suppressing technologies. Then the low noise measuring methods are introduced, and several typical experimental devices generating microwave frequency and the obtained results are described. With the continuous improvement of optical frequency comb and noise suppression technology, microwave frequency source with very low noise will have wider application prospects and application fields.
      通信作者: 韩海年, hnhan@iphy.ac.cn
    • 基金项目: 中国科学院战略重点研究计划(批准号: XDA1502040404, XDB21010400)资助的课题
      Corresponding author: Han Hai-Nian, hnhan@iphy.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA1502040404, XDB21010400)
    [1]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [2]

    Hansch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [3]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [4]

    Murphy M T, Udem T, Holzwarth R, Sizmann A, Pasquini L, Araujo-Hauck C, Dekker H, D'Odorico S, Fischer M, Hansch T W, Manescau A 2007 Mon. Not. Roy. Astron. Soc. 380 839Google Scholar

    [5]

    Schiller S 2002 Opt. Lett. 27 766Google Scholar

    [6]

    Hyun S, Kim Y J, Kim Y, Kim S W 2010 CIRP Ann-Manuf. Technol. 59 555Google Scholar

    [7]

    Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev V S, Scrinzi A, Hansch T W, Krausz F 2003 Nature 421 611Google Scholar

    [8]

    Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233Google Scholar

    [9]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 435

    [10]

    Scheer J A, IEEE 1990 Coherent Radar System Performance Estimation (New York: IEEE) pp125−128

    [11]

    Santarelli C, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar

    [12]

    Kim J, Cox J A, Chen J, Kaertner F X 2008 Nat. Photonics 2 733Google Scholar

    [13]

    Savchenkov A A, Rubiola E, Matsko A B, Ilchenko V S, Maleki L 2008 Opt. Express 16 4130Google Scholar

    [14]

    Yao Y, Chen X F, Dai Y T, Xie S Z 2006 IEEE Photonics Technol. Lett. 18 187Google Scholar

    [15]

    Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667Google Scholar

    [16]

    Ivanov E N, McFerran J J, Diddams S A, Hollberg L 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 736Google Scholar

    [17]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Le Coq Y, Kersale Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar

    [18]

    Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guena J, Clairon A, Tobar M E, Bize S, Le Coq Y, Santarelli G 2009 Appl. Phys. Lett. 94 1411053

    [19]

    Diddams S A, Kirchner M, Fortier T, Braje D, Weiner A M, Hollberg L 2009 Opt. Express 17 3331Google Scholar

    [20]

    Zhang W, Xu Z, Lours M, Boudot R, Kersale Y, Santarelli G, Le Coq Y 2010 Appl. Phys. Lett. 96 2111053

    [21]

    Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W, Diddams S A 2011 Nat. Photonics 5 425Google Scholar

    [22]

    Swann W C, Baumann E, Giorgetta F R, Newbury N R 2011 Opt. Express 19 24387Google Scholar

    [23]

    Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Le Coq Y, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar

    [24]

    Quinlan F, Fortier T M, Kirchner M S, Taylor J A, Thorpe M J, Lemke N, Ludlow A D, Jiang Y Y, Diddams S A 2011 Opt. Lett. 36 3260Google Scholar

    [25]

    Fortier T M, Nelson C W, Hati A, Quinlan F, Taylor J, Jiang H, Chou C W, Rosenband T, Lemke N, Ludlow A, Howe D, Oates C W, Diddams S A 2012 Appl. Phys. Lett. 100 2311113

    [26]

    Jung K, Kim J 2012 Opt. Lett. 37 2958Google Scholar

    [27]

    Meyer S A, Fortier T M, Lecomte S, Diddams S A 2013 Appl. Phys. B-Lasers Opt. 112 565Google Scholar

    [28]

    Jung K, Shin J, Kim J 2013 IEEE Photonics J. 5 55009066Google Scholar

    [29]

    Fortier T M, Quinlan F, Hati A, Nelson C, Taylor J A, Fu Y, Campbell J, Diddams S A 2013 Opt. Lett. 38 1712Google Scholar

    [30]

    Didier A, Millo J, Grop S, Dubois B, Bigler E, Rubiola E, Lacroute C, Kersale Y 2015 Appl. Optics 54 3682Google Scholar

    [31]

    Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641Google Scholar

    [32]

    Millo J, Magalhaes D V, Mandache C, Le Coq Y, English E M L, Westergaard P G, Lodewyck J, Bize S, Lemonde P, Santarelli G 2009 Phys. Rev. A 79 053829Google Scholar

    [33]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photonics 515 8

    [34]

    Newbury N R, Washburn B R 2005 IEEE J. Quant. Electron. 41 1388Google Scholar

    [35]

    Wang H-B, Han H-N, Zhang Z-Y, Shao X-D, Zhu J-F, Wei Z-Y 2020 Chin. Phys. B 29 030601Google Scholar

    [36]

    Pang L H, Han H N, Zhao Z B, Liu W J, Wei Z Y 2016 Opt. Express 24 28994

    [37]

    Yao Y, Jiang Y, Yu H, Bi Z, Ma L 2016 Natl. Sci. Rev. 3 463Google Scholar

    [38]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photonics 13 714Google Scholar

    [39]

    Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J, Jones D J 2005 Opt. Lett. 30 2948Google Scholar

    [40]

    Li Z, Fu Y, Piels M, Pan H, Beling A, Bowers J E, Campbell J C 2011 Opt. Express 19 385Google Scholar

    [41]

    Quinlan F, Fortier T M, Jiang H, Hati A, Nelson C, Fu Y, Campbell J C, Diddams S A 2013 Nat. Photonics 7 290Google Scholar

    [42]

    Endo M, Shoji T D, Schibli T R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1102413Google Scholar

    [43]

    韩海年, 魏志义 2016 物理 45 449Google Scholar

    Han H N, Wei Z Y 2016 Physics 45 449Google Scholar

    [44]

    Xie X P, Bouchand R, Nicolodi D, Giunta M, Hansel W, Lezius M, Joshi A, Datta S, Alexandre C, Lours M, Tremblin P A, Santarelli G, Holzwarth R, Le Coq Y 2017 Nature Photonics 11 44Google Scholar

    [45]

    Lee D, Nakamura T, Campbell J C, Diddams S A, Quinlan F Conference on Lasers and Electro-Optics Washington, DC, 2020/05/10 pSF1 G.7

    [46]

    Jiang H F, Taylor J, Quinlan F, Fortier T, Diddams S A 2011 IEEE Photonics J. 3 1004Google Scholar

    [47]

    Quinlan F, Baynes F N, Fortier T M, Zhou Q G, Cross A, Campbell J C, Diddams S A 2014 Opt. Lett. 39 1581Google Scholar

    [48]

    Walls W F, IEEE 1992 Cross-Correlation Phase Noise Measurements (New York: IEEE) pp257−261

    [49]

    Rubiola E, Giordano V 2000 Rev. Sci. Instrum. 71 Pii [s0034-6748(00)01708-1] 3085

    [50]

    Hati A, Nelson C W, Howe D A 2016 Rev. Sci. Instrum. 87 0347088

    [51]

    Ivanov E N, Tobar M E, Woode R A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 1526Google Scholar

    [52]

    Rubiola E, Vernotte F 2010 Physics

    [53]

    Diddams S A, Bartels A, Ramond T M, Oates C W, Bize S, Curtis E A, Bergquist J C, Hollberg L 2003 IEEE J. Sel. Top. Quantum Electron. 9 1072Google Scholar

    [54]

    McFerran J J, Ivanov E N, Bartels A, Wilpers G, Oates C W, Diddams S A, Hollberg L 2005 Electronics Lett. 41 650Google Scholar

    [55]

    Lucas E, Brochard P, Bouchand R, Schilt S, Sudmeyer T, Kippenberg T J 2020 Nat. Commun. 11 3748Google Scholar

    [56]

    Ivanov E N, Tobar M E 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 263Google Scholar

    [57]

    Fluhr C, Grop S, Dubois B, Kersale Y, Rubiola E, Giordano V 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 915Google Scholar

    [58]

    Weyers S, Gerginov V, Kazda M, Rahm J, Lipphardt B, Dobrev G, Gibble K 2018 Metrologia 55 789Google Scholar

    [59]

    Gill P 2011 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 369 4109

    [60]

    Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X J, Campbell J C, McGrew W F, Zhang X G, Hassan Y S, Nicolodi D, Beloy K, Ludlow A D, Diddams S A, Quinlan F 2020 Science 368 889Google Scholar

    [61]

    Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photonics 13 158Google Scholar

    [62]

    Kovach A, Chen D Y, He J H, Choi H, Dogan A H, Ghasemkhani M, Taheri H, Armani A M 2020 Adv. Opt. Photonics 12 135Google Scholar

    [63]

    Wang W, Wang L, Zhang W 2020 Advanced Photonics 2 1

    [64]

    Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microw. Theory Techn. 59 2978Google Scholar

    [65]

    Wolf P, Bize S, Clairon A, Luiten A N, Santarelli G, Tobar M E 2003 Phys. Rev. Lett. 90 060402Google Scholar

    [66]

    Stanwix P L, Tobar M E, Wolf P, Susli M, Locke C R, Ivanov E N, Winterflood J, van Kann F 2005 Phys. Rev. Lett. 95 0404044

    [67]

    Rioja M, Dodson R, Asaki Y, Hartnett J, Tingay S 2012 Astron. J. 144 121Google Scholar

    [68]

    Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J, Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887Google Scholar

    [69]

    Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar

    [70]

    Jiang Z, Huang C B, Leaird D E, Weiner A M 2007 Nat. Photonics 1 463Google Scholar

    [71]

    Deakin C, Liu Z X 2020 Opt. Lett. 45 173Google Scholar

  • 图 1  光学频率梳的时域和频域模型

    Fig. 1.  Time domain and frequency domain models of optical frequency comb.

    图 2  光学频率梳的锁定方式 (a)锁定到微波频率参考; (b)锁定到光学频率参考

    Fig. 2.  Locking motheds of optical frequency comb: (a) Lock to microwave frequency reference; (b) lock to optical frequency reference.

    图 3  微波频率产生原理示意图

    Fig. 3.  Schematic of microwave frequency generation.

    图 4  (a)掺铒光梳分频产生的10 GHz微波信号的相位噪声; (b)${f_{{\rm{ceo}}}}$锁定的剩余噪声; (c)${f_{\rm{b}}}$锁定的剩余噪声; (d) RIN经由光电探测器转换为的相位噪声[24]

    Fig. 4.  (a) Phase noise of 10 GHz microwave signal generated by erbium-doped optical comb; (b)${f_{{\rm{ceo}}}}$ residual noise; (c) ${f_{\rm{b}}}$ residual noise; (d) phase noise converted by RIN via photodetector[24]

    图 5  频域中的散粒噪声产生原理[41]

    Fig. 5.  Schematic of shot noise generation in frequency domain[41].

    图 6  MZI光纤脉冲重复频率倍频装置示意图[23]

    Fig. 6.  An illustration of the cascaded MZI scheme used to achieve a pulse rate multiplication[23].

    图 7  双通道互相关测量技术原理图[52]

    Fig. 7.  Basics of the cross-spectrum method[52].

    图 8  两种互相关测量装置

    Fig. 8.  Two types of cross correlation measuring devices.

    图 9  10 GHz范围低噪声微波源研究进展

    Fig. 9.  Research progress of low noise microwave sourcesin 10 GHz range.

    图 10  10 GHz低噪声微波的实验装置示意图[21]

    Fig. 10.  Schematic of the experimental set-up used for generation and characterization of the 10 GHz low-noise microwaves[21].

    图 11  混合微波振荡器的实验装置和测量结果[25]

    Fig. 11.  Generation and phase noise of 10 GHz signals from hybrid oscillators[25].

    图 12  低噪声微波频率产生系统实验装置图[44]

    Fig. 12.  Experimental set-up for low-noise microwave generation and characterization[44].

    图 13  光学原子钟分频产生微波频率[60]

    Fig. 13.  Coherent optical clock down-conversion[60].

    图 14  微腔光梳产生微波频率原理示意图[55]

    Fig. 14.  Principle of operation of the Kerr comb-based transfer oscillator[55].

  • [1]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [2]

    Hansch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [3]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [4]

    Murphy M T, Udem T, Holzwarth R, Sizmann A, Pasquini L, Araujo-Hauck C, Dekker H, D'Odorico S, Fischer M, Hansch T W, Manescau A 2007 Mon. Not. Roy. Astron. Soc. 380 839Google Scholar

    [5]

    Schiller S 2002 Opt. Lett. 27 766Google Scholar

    [6]

    Hyun S, Kim Y J, Kim Y, Kim S W 2010 CIRP Ann-Manuf. Technol. 59 555Google Scholar

    [7]

    Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev V S, Scrinzi A, Hansch T W, Krausz F 2003 Nature 421 611Google Scholar

    [8]

    Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233Google Scholar

    [9]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 435

    [10]

    Scheer J A, IEEE 1990 Coherent Radar System Performance Estimation (New York: IEEE) pp125−128

    [11]

    Santarelli C, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar

    [12]

    Kim J, Cox J A, Chen J, Kaertner F X 2008 Nat. Photonics 2 733Google Scholar

    [13]

    Savchenkov A A, Rubiola E, Matsko A B, Ilchenko V S, Maleki L 2008 Opt. Express 16 4130Google Scholar

    [14]

    Yao Y, Chen X F, Dai Y T, Xie S Z 2006 IEEE Photonics Technol. Lett. 18 187Google Scholar

    [15]

    Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667Google Scholar

    [16]

    Ivanov E N, McFerran J J, Diddams S A, Hollberg L 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 736Google Scholar

    [17]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Le Coq Y, Kersale Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar

    [18]

    Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guena J, Clairon A, Tobar M E, Bize S, Le Coq Y, Santarelli G 2009 Appl. Phys. Lett. 94 1411053

    [19]

    Diddams S A, Kirchner M, Fortier T, Braje D, Weiner A M, Hollberg L 2009 Opt. Express 17 3331Google Scholar

    [20]

    Zhang W, Xu Z, Lours M, Boudot R, Kersale Y, Santarelli G, Le Coq Y 2010 Appl. Phys. Lett. 96 2111053

    [21]

    Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W, Diddams S A 2011 Nat. Photonics 5 425Google Scholar

    [22]

    Swann W C, Baumann E, Giorgetta F R, Newbury N R 2011 Opt. Express 19 24387Google Scholar

    [23]

    Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Le Coq Y, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar

    [24]

    Quinlan F, Fortier T M, Kirchner M S, Taylor J A, Thorpe M J, Lemke N, Ludlow A D, Jiang Y Y, Diddams S A 2011 Opt. Lett. 36 3260Google Scholar

    [25]

    Fortier T M, Nelson C W, Hati A, Quinlan F, Taylor J, Jiang H, Chou C W, Rosenband T, Lemke N, Ludlow A, Howe D, Oates C W, Diddams S A 2012 Appl. Phys. Lett. 100 2311113

    [26]

    Jung K, Kim J 2012 Opt. Lett. 37 2958Google Scholar

    [27]

    Meyer S A, Fortier T M, Lecomte S, Diddams S A 2013 Appl. Phys. B-Lasers Opt. 112 565Google Scholar

    [28]

    Jung K, Shin J, Kim J 2013 IEEE Photonics J. 5 55009066Google Scholar

    [29]

    Fortier T M, Quinlan F, Hati A, Nelson C, Taylor J A, Fu Y, Campbell J, Diddams S A 2013 Opt. Lett. 38 1712Google Scholar

    [30]

    Didier A, Millo J, Grop S, Dubois B, Bigler E, Rubiola E, Lacroute C, Kersale Y 2015 Appl. Optics 54 3682Google Scholar

    [31]

    Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641Google Scholar

    [32]

    Millo J, Magalhaes D V, Mandache C, Le Coq Y, English E M L, Westergaard P G, Lodewyck J, Bize S, Lemonde P, Santarelli G 2009 Phys. Rev. A 79 053829Google Scholar

    [33]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photonics 515 8

    [34]

    Newbury N R, Washburn B R 2005 IEEE J. Quant. Electron. 41 1388Google Scholar

    [35]

    Wang H-B, Han H-N, Zhang Z-Y, Shao X-D, Zhu J-F, Wei Z-Y 2020 Chin. Phys. B 29 030601Google Scholar

    [36]

    Pang L H, Han H N, Zhao Z B, Liu W J, Wei Z Y 2016 Opt. Express 24 28994

    [37]

    Yao Y, Jiang Y, Yu H, Bi Z, Ma L 2016 Natl. Sci. Rev. 3 463Google Scholar

    [38]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photonics 13 714Google Scholar

    [39]

    Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J, Jones D J 2005 Opt. Lett. 30 2948Google Scholar

    [40]

    Li Z, Fu Y, Piels M, Pan H, Beling A, Bowers J E, Campbell J C 2011 Opt. Express 19 385Google Scholar

    [41]

    Quinlan F, Fortier T M, Jiang H, Hati A, Nelson C, Fu Y, Campbell J C, Diddams S A 2013 Nat. Photonics 7 290Google Scholar

    [42]

    Endo M, Shoji T D, Schibli T R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1102413Google Scholar

    [43]

    韩海年, 魏志义 2016 物理 45 449Google Scholar

    Han H N, Wei Z Y 2016 Physics 45 449Google Scholar

    [44]

    Xie X P, Bouchand R, Nicolodi D, Giunta M, Hansel W, Lezius M, Joshi A, Datta S, Alexandre C, Lours M, Tremblin P A, Santarelli G, Holzwarth R, Le Coq Y 2017 Nature Photonics 11 44Google Scholar

    [45]

    Lee D, Nakamura T, Campbell J C, Diddams S A, Quinlan F Conference on Lasers and Electro-Optics Washington, DC, 2020/05/10 pSF1 G.7

    [46]

    Jiang H F, Taylor J, Quinlan F, Fortier T, Diddams S A 2011 IEEE Photonics J. 3 1004Google Scholar

    [47]

    Quinlan F, Baynes F N, Fortier T M, Zhou Q G, Cross A, Campbell J C, Diddams S A 2014 Opt. Lett. 39 1581Google Scholar

    [48]

    Walls W F, IEEE 1992 Cross-Correlation Phase Noise Measurements (New York: IEEE) pp257−261

    [49]

    Rubiola E, Giordano V 2000 Rev. Sci. Instrum. 71 Pii [s0034-6748(00)01708-1] 3085

    [50]

    Hati A, Nelson C W, Howe D A 2016 Rev. Sci. Instrum. 87 0347088

    [51]

    Ivanov E N, Tobar M E, Woode R A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 1526Google Scholar

    [52]

    Rubiola E, Vernotte F 2010 Physics

    [53]

    Diddams S A, Bartels A, Ramond T M, Oates C W, Bize S, Curtis E A, Bergquist J C, Hollberg L 2003 IEEE J. Sel. Top. Quantum Electron. 9 1072Google Scholar

    [54]

    McFerran J J, Ivanov E N, Bartels A, Wilpers G, Oates C W, Diddams S A, Hollberg L 2005 Electronics Lett. 41 650Google Scholar

    [55]

    Lucas E, Brochard P, Bouchand R, Schilt S, Sudmeyer T, Kippenberg T J 2020 Nat. Commun. 11 3748Google Scholar

    [56]

    Ivanov E N, Tobar M E 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 263Google Scholar

    [57]

    Fluhr C, Grop S, Dubois B, Kersale Y, Rubiola E, Giordano V 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 915Google Scholar

    [58]

    Weyers S, Gerginov V, Kazda M, Rahm J, Lipphardt B, Dobrev G, Gibble K 2018 Metrologia 55 789Google Scholar

    [59]

    Gill P 2011 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 369 4109

    [60]

    Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X J, Campbell J C, McGrew W F, Zhang X G, Hassan Y S, Nicolodi D, Beloy K, Ludlow A D, Diddams S A, Quinlan F 2020 Science 368 889Google Scholar

    [61]

    Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photonics 13 158Google Scholar

    [62]

    Kovach A, Chen D Y, He J H, Choi H, Dogan A H, Ghasemkhani M, Taheri H, Armani A M 2020 Adv. Opt. Photonics 12 135Google Scholar

    [63]

    Wang W, Wang L, Zhang W 2020 Advanced Photonics 2 1

    [64]

    Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microw. Theory Techn. 59 2978Google Scholar

    [65]

    Wolf P, Bize S, Clairon A, Luiten A N, Santarelli G, Tobar M E 2003 Phys. Rev. Lett. 90 060402Google Scholar

    [66]

    Stanwix P L, Tobar M E, Wolf P, Susli M, Locke C R, Ivanov E N, Winterflood J, van Kann F 2005 Phys. Rev. Lett. 95 0404044

    [67]

    Rioja M, Dodson R, Asaki Y, Hartnett J, Tingay S 2012 Astron. J. 144 121Google Scholar

    [68]

    Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J, Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887Google Scholar

    [69]

    Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar

    [70]

    Jiang Z, Huang C B, Leaird D E, Weiner A M 2007 Nat. Photonics 1 463Google Scholar

    [71]

    Deakin C, Liu Z X 2020 Opt. Lett. 45 173Google Scholar

  • [1] 赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列. 基于光谱增强技术实现对532 nm波长激光频率标定. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240106
    [2] 刘琪华, 梅佳雪, 王金栋, 张福民, 曲兴华. 基于锁模光学频率梳的高速数据传输. 物理学报, 2024, 73(4): 044204. doi: 10.7498/aps.73.20231384
    [3] 覃俭. 光源相位噪声对高斯玻色采样的影响. 物理学报, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [4] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [5] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [6] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [7] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [8] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [9] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [10] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [11] 武跃龙, 李睿, 芮扬, 姜海峰, 武海斌. 6Li原子跃迁频率和超精细分裂的精密测量. 物理学报, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [12] 姜海峰. 超稳光生微波源研究进展. 物理学报, 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [13] 项晓, 王少锋, 侯飞雁, 权润爱, 翟艺伟, 王盟盟, 周聪华, 许冠军, 董瑞芳, 刘涛, 张首刚. 利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究. 物理学报, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [14] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [15] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [16] 丁学利, 李玉叶. 相位噪声诱发神经放电的单次或两次相干共振. 物理学报, 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [17] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [18] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [19] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [20] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
计量
  • 文章访问数:  6298
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 修回日期:  2021-01-14
  • 上网日期:  2021-06-25
  • 刊出日期:  2021-07-05

/

返回文章
返回