搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼在fcc-Fe晶界偏析及对界面结合能力影响的第一性原理研究

徐攀攀 韩培德 张竹霞 张彩丽 董楠 王剑

引用本文:
Citation:

硼在fcc-Fe晶界偏析及对界面结合能力影响的第一性原理研究

徐攀攀, 韩培德, 张竹霞, 张彩丽, 董楠, 王剑

First-principles study of boron segregation in fcc-Fe grain boundaries and its influence on interface adhesive strength

Xu Pan-Pan, Han Pei-De, Zhang Zhu-Xia, Zhang Cai-Li, Dong Nan, Wang Jian
PDF
HTML
导出引用
  • 基于第一性原理的密度泛函理论计算了B在fcc-Fe的Σ3(112), Σ5(210), Σ5(310), Σ9(114), Σ9(221)和Σ11(113)六种对称倾斜晶界的偏析行为, 从原子和电子层次揭示了B的偏析机制. 结果表明: B更易偏析于Σ5(210), Σ5(310)和Σ9(114)晶界, 而在Σ9(221), Σ3(112) 和Σ11(113)晶界偏析的倾向较弱; B优先占据配位数最大、五面体或六面体构型的位置; 拉伸实验和Rice-Wang热力学模型计算表明, B在晶界的偏析可提高界面的结合能力; B在Σ9(114)晶界偏析后电子结构引起局部电荷密度增加导致的化学效应优于结构变化带来的不利影响, B-p电子与Fe-s电子间的强相互作用提高了界面的结合能力. 本研究结果对B优化奥氏体不锈钢界面结构具有一定指导作用.
    Boron, a commonly used microalloying element in steel, is distributed mainly at the grain boundary of stainless steel and plays an important role in regulating the mechanical, corrosion resistance and grain boundary structure of stainless steel. Owing to the small amount of boron added into the steel, it is difficult experimentally to detect the traces of boron segregation at the grain boundary, not to mention analyzing the structural characteristics of the boron segregation grain boundary. First-principles density functional theory (DFT) provides convenience in analyzing the existence mode and mechanism of boron in austenitic steel from the atomic level. Combining with the actual grain boundary structure types in austenitic stainless steel, Fcc-Fe Σ3(112), Σ5(210), Σ5(310), Σ9(114), Σ9(221) and Σ11(113) symmetric tilt grain boundaries are constructed based on DFT, and the segregation behaviors of boron atoms at the six grain boundaries are studied to reveal the segregation mechanism from the atomic and electronic level. The results show that boron segregation occurs mostly at Σ5(210), Σ5(310) and Σ9(114) grain boundaries, while a relatively weak segregation tendency is observed at Σ9(221), Σ3(112) and Σ11(113) grain boundaries; boron atom preferentially occupies the pentahedral or hexahedral segregation position with the largest coordination number; the interface adhesive strength at grain boundaries is improved by the segregation of boron according to the tensile test, which complies with the calculation results of Rice-Wang thermodynamic model; the chemical effect caused by the increase of local charge density after boron segregation at Σ9(114) grain boundary outstrips the adverse effect of structural changes, and the strong interaction between B-p electrons and Fe-s electrons improves the interface adhesive strength. The results provide a reference for using boron to optimize the interface structure of austenitic stainless-steel.
      通信作者: 韩培德, hanpeide@126.com
    • 基金项目: 国家自然科学基金(批准号: 51871159, U1860204)和山西省自然科学基金(批准号: 201801D221125)资助的课题
      Corresponding author: Han Pei-De, hanpeide@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51871159, U1860204) and the Natural Science Foundation of Shanxi Province, China (Grant No. 201801D221125)
    [1]

    Ma S, Pan W, Xing J, et al. 2017 Mater. Chem. Phys. 199 356Google Scholar

    [2]

    Naderi M, Ketabchi M, Abbasi M, et al. 2010 Steel Res. Int. 81 216Google Scholar

    [3]

    Ghali S N, El-Faramawy H S, Eissa M M 2012 J. Miner. Mater. Char. Eng. 11 995

    [4]

    Jones R B, Younes C M, Heard P J, et al. 2002 Acta Mater. 50 4395Google Scholar

    [5]

    Zarandi F, Yue S 2006 Metall. Mater. Trans. A 37 2316Google Scholar

    [6]

    López-Chipres E, Mejía I, Maldonado C, et al. 2007 Mater. Sci. Eng. A-Struct 460/461 464Google Scholar

    [7]

    Mejía I, Bedolla-Jacuinde A, Maldonado C, et al. 2011 Mater. Sci. Eng. A-Struct 528 4468Google Scholar

    [8]

    Deva A, Jha B K, Mishra N S 2011 Mater. Sci. Eng. A-Struct 528 7375Google Scholar

    [9]

    Takahashi J, Ishikawa K, Kawakami K, et al. 2017 Acta Mater. 133 41Google Scholar

    [10]

    Li Y, Ponge D, Choi P, Raabe D 2015 Scripta Mater. 96 13Google Scholar

    [11]

    王博, 张建民, 路彦冬, 等 2011 物理学报 60 016601Google Scholar

    Wang B, Zhang J M, Lu Y D, et al. 2011 Acta Phys. Sin. 60 016601Google Scholar

    [12]

    孟凡顺, 李久会, 赵星 2014 物理学报 63 237102Google Scholar

    Meng F S, Li J H, Zhao X 2014 Acta Phys. Sin. 63 237102Google Scholar

    [13]

    Li Y, Korzhavyi P A, Sandström R, et al. 2017 Phys. Rev. Mater. 1 070602Google Scholar

    [14]

    Huang Z, Chen F, Shen Q, et al. 2018 Acta Mater. 148 110Google Scholar

    [15]

    Huang Z, Chen F, Shen Q, et al. 2019 Acta Mater. 166 113Google Scholar

    [16]

    Du Y A, Ismer L, Rogal J, et al. 2011 Phys. Rev. B 84 144121Google Scholar

    [17]

    Wang J, Janisch R, Madsen G K H, et al. 2016 Acta Mater. 115 259Google Scholar

    [18]

    Razumovskiy V I, Lozovoi A Y, Razumovskii I M 2015 Acta Mater. 82 369Google Scholar

    [19]

    Bentria E L T, Lefkaier I K, Bentria B 2013 Mater. Sci. Eng. A-Struct 577 197Google Scholar

    [20]

    Wu R, Freeman A J, Olson G B 1994 Science 265 376Google Scholar

    [21]

    Shang J X, Wang C Y 2001 J. Phys.-Condens. Mat. 13 9635Google Scholar

    [22]

    He B, Xiao W, Hao W, et al. 2013 J. Nucl. Mater. 441 301Google Scholar

    [23]

    Li Y, Han C, Zhang C, et al. 2016 Comp. Mater. Sci. 115 170Google Scholar

    [24]

    Rice J R, Wang J S 1989 Mater. Sci. Eng. A-Struct 107 23Google Scholar

    [25]

    张颖, 吕广宏, 邓胜华 2006 物理学报 55 2901Google Scholar

    Zhang Y, Lü G H, Deng S H 2006 Acta Phys. Sin. 55 2901Google Scholar

    [26]

    王晓中, 林理彬, 何捷, 等 2011 物理学报 60 077104Google Scholar

    Wang X Z, Lin L B, He J, et al. 2011 Acta Phys. Sin. 60 077104Google Scholar

    [27]

    Zhou H, Jin S, Zhang Y, Lu G 2011 Prog. Nat. Sci. 21 240Google Scholar

    [28]

    Shi F, Tian P C, Jia N, et al. 2016 Corros. Sci. 107 49Google Scholar

    [29]

    Mahjoub R, Laws K J, Stanford N, Ferry M 2018 Acta Mater. 158 257Google Scholar

    [30]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [31]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [32]

    Häglund J, Guillermet A F, Grimvall G, et al. 1993 Phys. Rev. B 48 11685Google Scholar

    [33]

    Jiang D E, Carter E A 2003 Phys. Rev. B 67 214103Google Scholar

    [34]

    Basinski Z S, Hume-Rothery W, Sutton A L 1955 Proc. R. Soc. Lond. A 229 459Google Scholar

    [35]

    Bean J J, McKenna K P 2016 Acta Mater. 110 246Google Scholar

    [36]

    Tran R, Xu Z, Zhou N, et al. 2016 Acta Mater. 117 91Google Scholar

    [37]

    Yang Y, Ding J, Zhang P, et al. 2019 Nucl. Instrum. Meth. B 456 7Google Scholar

    [38]

    Lejcek P 2010 Grain Boundary Segregation in Metals (Berlin: Springer Science & Business Media) p51

    [39]

    Zhang S, Kontsevoi O Y, Freeman A J, et al. 2011 Acta Mater. 59 6155Google Scholar

    [40]

    Wu X, You Y W, Kong X S, et al. 2016 Acta Mater. 120 315Google Scholar

    [41]

    Tian Z X, Yan J X, Xiao W, et al. 2009 Phys. Rev. B 79 144114Google Scholar

    [42]

    Yamaguchi M, Shiga M, Kaburaki H 2005 Science 307 393Google Scholar

    [43]

    Rose J H, Smith J R, Ferrante J 1983 Phys. Rev. B 28 1835

    [44]

    Warrington D H 1975 J. Phys. Colloques 36 C4-87

    [45]

    Brokman A, Balluffi R W 1981 Acta Metall. 29 1703Google Scholar

    [46]

    Scholz F 1997 J Solid State Electrochem 1 117Google Scholar

    [47]

    Zheng H, Li X, Tran R, et al. 2020 Acta Mater. 186 40Google Scholar

    [48]

    Hatcher N, Madsen G K H, Drautz R 2014 J. Phys. Condens. Mat. 26 145502Google Scholar

    [49]

    Rhodes N R, Tschopp M A, Solanki K N 2013 Model. Simul. Mater. Sc. 21 035009Google Scholar

    [50]

    Bai J, Cui Y, Wang J, et al. 2018 Metals 8 497Google Scholar

  • 图 1  fcc-Fe的 (a) Σ3(112), (b) Σ5(210), (c) Σ5(310), (d) Σ9(114), (e) Σ9(221), (f) Σ11(113)晶界和(g) B所处间隙位的模型图

    Fig. 1.  Schematic illustration showing (a) Σ3(112), (b) Σ5(210), (c) Σ5(310), (d) Σ9(114), (e) Σ9(221), (f) Σ11(113) grain boundaries and (g) polyhedron interstices where B located.

    图 2  B在6个晶界中不同间隙位置的溶解能

    Fig. 2.  The solution energies for B at different interstitial sites in the six studied grain boundaries.

    图 3  B原子在6个晶界中最稳定的偏析位点上的偏析能

    Fig. 3.  The segregation energies for B at the most stable segregation sites of the six studied grain boundaries.

    图 4  B原子在6个晶界稳定偏析位的强化能

    Fig. 4.  The strengthening energies for B at the stable segregation sites of the six studied grain boundaries.

    图 5  添加B原子前后6个晶界的抗拉强度曲线

    Fig. 5.  Tensile strength curves of the six studied grain boundaries without and with B.

    图 6  添加B原子前后, Σ9(114)晶界体系(a)未形变及(b)均匀拉伸12%变形量后的电荷密度图

    Fig. 6.  The charge density of (a) undeformed and (b) 12% tensile deformed Σ9(114) grain boundary without and with B

    图 7  (a)未添加B原子和(b)添加B原子Σ9(114)晶界的总态密度图, 以及B原子附近Fe1, Fe2和B原子的分波态密度图

    Fig. 7.  The total density of states (TDOS) of Σ9(114) grain boundary without and with B atom, correspond to (a) and (b) respectively, and the projected density of states (PDOS) of Fe atoms in the vicinity of B atom (Fe1 and Fe2)and B atom.

    表 1  fcc-Fe的CSL晶界的结构特性

    Table 1.  Structural characteristics of calculated grain boundaries

    Grain boundariesγGB/(J·m–2)ΔV/(Å3·Å–2)Angle/(°)Numbers of atomesSupercell dimensions/(Å × Å × Å)S2
    ∑3(112)[110]0.3410.207109.47484.86 × 5.955 × 17.03728.94
    ∑5(210)[001]1.6610.76253.13766.873 × 7.685 × 15.3752.82
    ∑5(310)[001]1.9250.54336.87785.434 × 6.873 × 21.73637.35
    ∑9(114)[110]1.5460.771141.06684.86 × 10.31 × 14.5852.54
    ∑9(221)[110]1.7161.14338.94684.86 × 7.29 × 20.6235.43
    ∑11(113)[110]0.5590.499129.52884.86 × 8.06 × 23.29639.17
    下载: 导出CSV

    表 2  B原子在各晶界最佳偏析位的多面体结构模型、添加B原子前后的多面体的体积和体积增量、B原子与近邻Fe原子的键长, 以及引起晶界能的变化量

    Table 2.  The local atomic configurations of the stable segregation sites, the volume and volume increment of the polyhedron without and with B, the bond length between B and neighboring Fe atoms, and the change of grain boundary energy caused by B segregation when B at the stable segregation sites.

    Σ3(112)Σ5(210)Σ5(310)Σ9(221)Σ9(114)Σ11(113)
    Polyhedron of favorable interstitial sites
    Volume of polyhedron/Å3

    Vpure Fe5.804.735.415.0313.906.01
    Vwith B7.674.915.755.1615.096.06
    Vwith B-Vpure Fe1.880.180.340.131.200.04
    Bond length of
    Fe-B/Å
    Fe1-B2.042.172.152.132.091.98
    Fe2-B2.842.032.062.022.221.95
    The change of grain boundary energy /(mJ·m–2)–14.90–8.72–11.50–31.10–25.00–5.02
    下载: 导出CSV
  • [1]

    Ma S, Pan W, Xing J, et al. 2017 Mater. Chem. Phys. 199 356Google Scholar

    [2]

    Naderi M, Ketabchi M, Abbasi M, et al. 2010 Steel Res. Int. 81 216Google Scholar

    [3]

    Ghali S N, El-Faramawy H S, Eissa M M 2012 J. Miner. Mater. Char. Eng. 11 995

    [4]

    Jones R B, Younes C M, Heard P J, et al. 2002 Acta Mater. 50 4395Google Scholar

    [5]

    Zarandi F, Yue S 2006 Metall. Mater. Trans. A 37 2316Google Scholar

    [6]

    López-Chipres E, Mejía I, Maldonado C, et al. 2007 Mater. Sci. Eng. A-Struct 460/461 464Google Scholar

    [7]

    Mejía I, Bedolla-Jacuinde A, Maldonado C, et al. 2011 Mater. Sci. Eng. A-Struct 528 4468Google Scholar

    [8]

    Deva A, Jha B K, Mishra N S 2011 Mater. Sci. Eng. A-Struct 528 7375Google Scholar

    [9]

    Takahashi J, Ishikawa K, Kawakami K, et al. 2017 Acta Mater. 133 41Google Scholar

    [10]

    Li Y, Ponge D, Choi P, Raabe D 2015 Scripta Mater. 96 13Google Scholar

    [11]

    王博, 张建民, 路彦冬, 等 2011 物理学报 60 016601Google Scholar

    Wang B, Zhang J M, Lu Y D, et al. 2011 Acta Phys. Sin. 60 016601Google Scholar

    [12]

    孟凡顺, 李久会, 赵星 2014 物理学报 63 237102Google Scholar

    Meng F S, Li J H, Zhao X 2014 Acta Phys. Sin. 63 237102Google Scholar

    [13]

    Li Y, Korzhavyi P A, Sandström R, et al. 2017 Phys. Rev. Mater. 1 070602Google Scholar

    [14]

    Huang Z, Chen F, Shen Q, et al. 2018 Acta Mater. 148 110Google Scholar

    [15]

    Huang Z, Chen F, Shen Q, et al. 2019 Acta Mater. 166 113Google Scholar

    [16]

    Du Y A, Ismer L, Rogal J, et al. 2011 Phys. Rev. B 84 144121Google Scholar

    [17]

    Wang J, Janisch R, Madsen G K H, et al. 2016 Acta Mater. 115 259Google Scholar

    [18]

    Razumovskiy V I, Lozovoi A Y, Razumovskii I M 2015 Acta Mater. 82 369Google Scholar

    [19]

    Bentria E L T, Lefkaier I K, Bentria B 2013 Mater. Sci. Eng. A-Struct 577 197Google Scholar

    [20]

    Wu R, Freeman A J, Olson G B 1994 Science 265 376Google Scholar

    [21]

    Shang J X, Wang C Y 2001 J. Phys.-Condens. Mat. 13 9635Google Scholar

    [22]

    He B, Xiao W, Hao W, et al. 2013 J. Nucl. Mater. 441 301Google Scholar

    [23]

    Li Y, Han C, Zhang C, et al. 2016 Comp. Mater. Sci. 115 170Google Scholar

    [24]

    Rice J R, Wang J S 1989 Mater. Sci. Eng. A-Struct 107 23Google Scholar

    [25]

    张颖, 吕广宏, 邓胜华 2006 物理学报 55 2901Google Scholar

    Zhang Y, Lü G H, Deng S H 2006 Acta Phys. Sin. 55 2901Google Scholar

    [26]

    王晓中, 林理彬, 何捷, 等 2011 物理学报 60 077104Google Scholar

    Wang X Z, Lin L B, He J, et al. 2011 Acta Phys. Sin. 60 077104Google Scholar

    [27]

    Zhou H, Jin S, Zhang Y, Lu G 2011 Prog. Nat. Sci. 21 240Google Scholar

    [28]

    Shi F, Tian P C, Jia N, et al. 2016 Corros. Sci. 107 49Google Scholar

    [29]

    Mahjoub R, Laws K J, Stanford N, Ferry M 2018 Acta Mater. 158 257Google Scholar

    [30]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [31]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [32]

    Häglund J, Guillermet A F, Grimvall G, et al. 1993 Phys. Rev. B 48 11685Google Scholar

    [33]

    Jiang D E, Carter E A 2003 Phys. Rev. B 67 214103Google Scholar

    [34]

    Basinski Z S, Hume-Rothery W, Sutton A L 1955 Proc. R. Soc. Lond. A 229 459Google Scholar

    [35]

    Bean J J, McKenna K P 2016 Acta Mater. 110 246Google Scholar

    [36]

    Tran R, Xu Z, Zhou N, et al. 2016 Acta Mater. 117 91Google Scholar

    [37]

    Yang Y, Ding J, Zhang P, et al. 2019 Nucl. Instrum. Meth. B 456 7Google Scholar

    [38]

    Lejcek P 2010 Grain Boundary Segregation in Metals (Berlin: Springer Science & Business Media) p51

    [39]

    Zhang S, Kontsevoi O Y, Freeman A J, et al. 2011 Acta Mater. 59 6155Google Scholar

    [40]

    Wu X, You Y W, Kong X S, et al. 2016 Acta Mater. 120 315Google Scholar

    [41]

    Tian Z X, Yan J X, Xiao W, et al. 2009 Phys. Rev. B 79 144114Google Scholar

    [42]

    Yamaguchi M, Shiga M, Kaburaki H 2005 Science 307 393Google Scholar

    [43]

    Rose J H, Smith J R, Ferrante J 1983 Phys. Rev. B 28 1835

    [44]

    Warrington D H 1975 J. Phys. Colloques 36 C4-87

    [45]

    Brokman A, Balluffi R W 1981 Acta Metall. 29 1703Google Scholar

    [46]

    Scholz F 1997 J Solid State Electrochem 1 117Google Scholar

    [47]

    Zheng H, Li X, Tran R, et al. 2020 Acta Mater. 186 40Google Scholar

    [48]

    Hatcher N, Madsen G K H, Drautz R 2014 J. Phys. Condens. Mat. 26 145502Google Scholar

    [49]

    Rhodes N R, Tschopp M A, Solanki K N 2013 Model. Simul. Mater. Sc. 21 035009Google Scholar

    [50]

    Bai J, Cui Y, Wang J, et al. 2018 Metals 8 497Google Scholar

  • [1] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, 2024, 73(6): 067101. doi: 10.7498/aps.73.20231735
    [2] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理. 物理学报, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [3] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究. 物理学报, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [4] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究. 物理学报, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [5] 吴迪, 杨永, 章小峰, 黄贞益, 王昭东. 第一性原理研究合金元素对逆变奥氏体在Cu沉淀上异质形核的影响. 物理学报, 2022, 71(8): 086301. doi: 10.7498/aps.71.20212144
    [6] 祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉. 金刚石/铝复合材料界面性质第一性原理计算及界面反应. 物理学报, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [7] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究. 物理学报, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [8] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [9] 黄灿, 李小影, 朱岩, 潘燕飞, 樊济宇, 施大宁, 马春兰. 第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用. 物理学报, 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [10] 熊辉辉, 刘昭, 张恒华, 周阳, 俞园. 合金元素对钢中NbC异质形核影响的第一性原理研究. 物理学报, 2017, 66(16): 168101. doi: 10.7498/aps.66.168101
    [11] 徐雷, 戴振宏, 王森, 刘兵, 孙玉明, 王伟田. 氟化硼碳平面的第一性原理研究. 物理学报, 2014, 63(10): 107102. doi: 10.7498/aps.63.107102
    [12] 孟凡顺, 李久会, 赵星. 第一性原理研究Zn偏析对CuΣ5晶界的影响. 物理学报, 2014, 63(23): 237102. doi: 10.7498/aps.63.237102
    [13] 唐杰, 张国英, 鲍君善, 刘贵立, 刘春明. 杂质S对Fe/Al2O3界面结合影响的第一性原理研究. 物理学报, 2014, 63(18): 187101. doi: 10.7498/aps.63.187101
    [14] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [15] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性. 物理学报, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [16] 卢金炼, 曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究. 物理学报, 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [17] 陈国栋, 王六定, 安博, 杨敏. 碳掺杂硼氮纳米管电子场发射的第一性原理研究. 物理学报, 2009, 58(13): 254-S258. doi: 10.7498/aps.58.254
    [18] 孙福河, 张晓丹, 王光红, 许盛之, 岳强, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖. 硼对沉积本征微晶硅薄膜特性的影响. 物理学报, 2009, 58(2): 1293-1297. doi: 10.7498/aps.58.1293
    [19] 吴海飞, 张寒洁, 廖清, 陆赟豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模. Mn/PbTe(111)界面行为的光电子能谱研究. 物理学报, 2009, 58(2): 1310-1315. doi: 10.7498/aps.58.1310
    [20] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究. 物理学报, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
计量
  • 文章访问数:  7390
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-24
  • 修回日期:  2021-04-12
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回