搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

45 nm宽带可连续调谐半导体薄片激光器

毛琳 张晓健 李春玲 朱仁江 汪丽杰 宋晏蓉 王涛 张鹏

引用本文:
Citation:

45 nm宽带可连续调谐半导体薄片激光器

毛琳, 张晓健, 李春玲, 朱仁江, 汪丽杰, 宋晏蓉, 王涛, 张鹏

45 nm broadband continuously tunable semiconductor disk laser

Mao Lin, Zhang Xiao-Jian, Li Chun-Ling, Zhu Ren-Jiang, Wang Li-Jie, Song Yan-Rong, Wang Tao, Zhang Peng
PDF
HTML
导出引用
  • 本文报道了一种宽带可连续调谐的半导体薄片激光器. 增益芯片的有源区由满足谐振周期增益结构的InGaAs多量子阱构成, 其荧光峰值波长位于965 nm附近. 利用增益芯片量子阱的宽带特性, 结合由高反射率外腔镜所构成的直线谐振腔, 可保障激光器较低的损耗和较宽的调谐范围. 在腔内插入不同厚度的双折射滤波片, 可获得连续可调谐的激光波长输出. 当双折射滤波片厚度为2 mm时, 激光器的波长调谐范围为45 nm, 最大输出功率为122 mW, XY方向的光束质量M 2因子分别为1.00和1.02. 文章还对增益芯片面发射谱的温度特性和双折射滤波片对激光线宽的压窄作用进行了讨论.
    A broadband continuously tunable semiconductor disk laser is reported in this paper. The active region of gain chip is composed of InGaAs multiple quantum wells with resonant periodic gain structure, and its fluorescence peak wavelength is around 965 nm. Using the wideband characteristics of the quantum wells in gain chip, along with the simple linear cavity that is formed by a high reflectivity external mirror, the laser has a low cavity loss and a wide tuning range. The continuously tunable laser wavelength can be obtained by inserting birefringent filters with different thickness into the cavity. When the thickness of the birefringent filter is 2 mm, the wavelength tuning range of the laser is 45 nm, the maximum output power is 122 mW, and the beam quality M2 factors in the X- and the Y-directions are 1.00 and 1.02, respectively. The temperature characteristics of the surface-emitting spectra of gain chip and the narrowing effect of birefringent filter on laser linewidth h are also discussed.
      通信作者: 王涛, wangt@cqnu.edu.cn ; 张鹏, zhangpeng2010@cqnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61904024)、重庆市教委科学技术研究重大项目(批准号: KJZD-M201900502)、重庆市基础研究与前沿探索项目(批准号: cstc2018jcyjAX0319)、教育部 "蓝火计划"(惠州)产学研联合创新基金(批准号: CXZJHZ201728)、发光学与应用国家重点实验室开放项目(批准号: SKLA-2019-04)、重庆市教委科学技术研究项目(批准号: KJQN201800528)资助的课题
      Corresponding author: Wang Tao, wangt@cqnu.edu.cn ; Zhang Peng, zhangpeng2010@cqnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61904024), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJZD-M201900502), the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2018jcyjAX0319), the “Blue Fire Plan” (Huizhou) Foundation of Industry University Research Joint Innovation of Ministry of Education, China (Grant No. CXZJHZ201728), the State Key Laboratory of Luminescence and Applications, China (Grant No. SKLA-2019-04), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN201800528).
    [1]

    Lu B, Wei F, Zhang Z, Xu D, Pan Z Q, Chen D J, Cai H W 2015 Chin. Opt. Lett. 13 091402Google Scholar

    [2]

    Farrell T, McDonald D 2004 Proc. SPIE 5594 66Google Scholar

    [3]

    Rothe K W, Brinkmann U, Walther H 1974 Appl. Phys. 10 678Google Scholar

    [4]

    Soldatov A N, Reimer I V, Evtushenko V A, Melnikov K Yu, Malikov A V 2010 B. Lebedev Phys. Inst. 37 4Google Scholar

    [5]

    Bhatia P S, Keto J W 1996 Appl. Opt. 35 4152Google Scholar

    [6]

    Kuehne A J C, Gather M C 2016 Chem. Rev. 116 12823Google Scholar

    [7]

    Fan T Y, Byer R L 1988 IEEE J. Quantum Electron. 24 895Google Scholar

    [8]

    Byer R L 1988 Science 239 742Google Scholar

    [9]

    Huber G, Kränkel C, Petermann K 2010 JOSA B 27 B93Google Scholar

    [10]

    Coldren L A, Fish G A, Akulova Y, Barton J S, Colder C W 2004 J. Lightwave Technol. 22 193Google Scholar

    [11]

    郝秀晴, 陈根祥 2010 光通信技术 34 4Google Scholar

    Hao X Q, Chen G X 2010 Opt. Commun. Technol. 34 4Google Scholar

    [12]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phys. Appl. Phys. 50 383001Google Scholar

    [13]

    Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U 2008 Opt. Lett. 33 2719Google Scholar

    [14]

    Heinen B, Wang T L, Sparenberg M, Weber A, Kunert B, Hader J, Koch S W, Moloney J V, Koch M, Stolz W 2012 Electron. Lett. 48 516Google Scholar

    [15]

    Hou G Y, Shu S L, Feng J, Popp A, Schmidt B, Lu H Y, Wang L J, Tian S C, Tong C Z, Wang L J 2019 IEEE Photonics J. 11 1Google Scholar

    [16]

    Fedorova K A, Guoyu H, Wichmann M, Kriso C, Zhang F, Stolz W, Schellrt M, Koch M, Rahimi-lman A 2020 Phys. Status Solidi-R 14 2000204Google Scholar

    [17]

    Li F, Mahmoud F, James T, Robert B, Yunshi K, Aramais Z, Jorg H, Jerome V, Wolfgang S, Stephan W 2006 Appl. Phys. Lett. 88 21105Google Scholar

    [18]

    Li F, Fallahi M, Zakharian A R, Hader J, Koch SW 2007 IEEE Photonic. Tech. L. 19 544Google Scholar

    [19]

    Borgentun C, Bengtsson J, Larsson A, Demaria F, Hein A, Unger P 2010 IEEE Photonic. Tech. L. 22 978Google Scholar

    [20]

    Butkus M, Rautiainen J, Okhotnikov O G, Hamilton C J, Malcolm G P A, Mikhrin S S, Krestnikov I L, Livshits D A, Rafailov E U 2011 IEEE J. Sel. Top. Quant. 17 1763Google Scholar

    [21]

    Yang Z, Albrecht R A, Cederberg J G, Sheik-Bahae M 2016 Appl. Phys. Lett. 109 1063Google Scholar

    [22]

    Artur B, Anna W J, Iwona S, Michal W, Marta W, Jan M 2017 IEEE PhotoN. Technol. Lett. 29 2215Google Scholar

    [23]

    Zhang P, Song Y R, Zhang X P, Dai T L, Liang Y P, Fan S Q 2011 Opt. Rev. 18 317Google Scholar

    [24]

    Mangold M, Wittwer V J, Sieber O D, Martin H, Igor L K, Daniil A L, Matthias G, Thomas S, Ursula K 2012 Opt. Express 20 4136Google Scholar

    [25]

    Fan L, Hader J, Schillgalies M, Fallahi M, Zakharian A R, Moloney J V, Bedford R, Murrary J T, Koch S W, Stolz W 2005 IEEE Photonic Tech. L. 17 1764Google Scholar

    [26]

    Sandusky J V, Brueck S R J 1996 IEEE Photonic Tech. L. 8 313Google Scholar

    [27]

    王亚龙, 王庆, 李文静, 王雅兰 2018 光学技术 44 88

    Wang Y L, Wang Q, Li W J, Wang Y L 2018 Opt. Tech. 44 88

  • 图 1  (a)增益芯片实物及(b)外延片结构示意图

    Fig. 1.  (a) Photograph and (b) epitaxial structure of the gain chip

    图 2  不同热沉温度下增益芯片的面发射PL谱

    Fig. 2.  Surface-emitting PL spectra of the gain chip under different heatsink temperatures.

    图 3  不同泵浦功率下增益芯片的面发射PL谱

    Fig. 3.  Surface-emitting PL spectra of the gain chip with different pump power.

    图 4  (a)宽带可调谐半导体薄片激光器结构示意图及(b)实物图

    Fig. 4.  (a) Schematics and (b)photograph of the broadband tunable semiconductor disk laser.

    图 5  自由运转下半导体薄片激光器的输出功率

    Fig. 5.  Output powers of the free-running semiconductor disk laser.

    图 6  最大输出功率为0.58 W时, 激光束的M2因子

    Fig. 6.  M2 factor of the laser beam when the maximum output power is 0.58 W.

    图 7  使用2 mm厚度BRF的SDL的波长调谐特性. 图中同时画出了对应波长的输出功率和不同m值下BRF的调谐曲线

    Fig. 7.  Tuning characteristics of the SDL with 2 mm thickness BRF. The corresponding output powers at various wavelengths and the tuning curves of the BRF with different m values are also plotted.

    图 8  用4 mm厚度BRF作调谐元件的SDL的调谐特性

    Fig. 8.  Tuning characteristics of the SDL with 4 mm thickness BRF.

    图 9  用6 mm厚度BRF作调谐元件的SDL的调谐特性

    Fig. 9.  Tuning characteristics of the SDL with 6 mm thickness BRF.

    图 10  自由运转及插入不同厚度BRF时SDL的光谱线宽

    Fig. 10.  Laser spectra of the SDL under free-running and with different thickness BRF.

  • [1]

    Lu B, Wei F, Zhang Z, Xu D, Pan Z Q, Chen D J, Cai H W 2015 Chin. Opt. Lett. 13 091402Google Scholar

    [2]

    Farrell T, McDonald D 2004 Proc. SPIE 5594 66Google Scholar

    [3]

    Rothe K W, Brinkmann U, Walther H 1974 Appl. Phys. 10 678Google Scholar

    [4]

    Soldatov A N, Reimer I V, Evtushenko V A, Melnikov K Yu, Malikov A V 2010 B. Lebedev Phys. Inst. 37 4Google Scholar

    [5]

    Bhatia P S, Keto J W 1996 Appl. Opt. 35 4152Google Scholar

    [6]

    Kuehne A J C, Gather M C 2016 Chem. Rev. 116 12823Google Scholar

    [7]

    Fan T Y, Byer R L 1988 IEEE J. Quantum Electron. 24 895Google Scholar

    [8]

    Byer R L 1988 Science 239 742Google Scholar

    [9]

    Huber G, Kränkel C, Petermann K 2010 JOSA B 27 B93Google Scholar

    [10]

    Coldren L A, Fish G A, Akulova Y, Barton J S, Colder C W 2004 J. Lightwave Technol. 22 193Google Scholar

    [11]

    郝秀晴, 陈根祥 2010 光通信技术 34 4Google Scholar

    Hao X Q, Chen G X 2010 Opt. Commun. Technol. 34 4Google Scholar

    [12]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phys. Appl. Phys. 50 383001Google Scholar

    [13]

    Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U 2008 Opt. Lett. 33 2719Google Scholar

    [14]

    Heinen B, Wang T L, Sparenberg M, Weber A, Kunert B, Hader J, Koch S W, Moloney J V, Koch M, Stolz W 2012 Electron. Lett. 48 516Google Scholar

    [15]

    Hou G Y, Shu S L, Feng J, Popp A, Schmidt B, Lu H Y, Wang L J, Tian S C, Tong C Z, Wang L J 2019 IEEE Photonics J. 11 1Google Scholar

    [16]

    Fedorova K A, Guoyu H, Wichmann M, Kriso C, Zhang F, Stolz W, Schellrt M, Koch M, Rahimi-lman A 2020 Phys. Status Solidi-R 14 2000204Google Scholar

    [17]

    Li F, Mahmoud F, James T, Robert B, Yunshi K, Aramais Z, Jorg H, Jerome V, Wolfgang S, Stephan W 2006 Appl. Phys. Lett. 88 21105Google Scholar

    [18]

    Li F, Fallahi M, Zakharian A R, Hader J, Koch SW 2007 IEEE Photonic. Tech. L. 19 544Google Scholar

    [19]

    Borgentun C, Bengtsson J, Larsson A, Demaria F, Hein A, Unger P 2010 IEEE Photonic. Tech. L. 22 978Google Scholar

    [20]

    Butkus M, Rautiainen J, Okhotnikov O G, Hamilton C J, Malcolm G P A, Mikhrin S S, Krestnikov I L, Livshits D A, Rafailov E U 2011 IEEE J. Sel. Top. Quant. 17 1763Google Scholar

    [21]

    Yang Z, Albrecht R A, Cederberg J G, Sheik-Bahae M 2016 Appl. Phys. Lett. 109 1063Google Scholar

    [22]

    Artur B, Anna W J, Iwona S, Michal W, Marta W, Jan M 2017 IEEE PhotoN. Technol. Lett. 29 2215Google Scholar

    [23]

    Zhang P, Song Y R, Zhang X P, Dai T L, Liang Y P, Fan S Q 2011 Opt. Rev. 18 317Google Scholar

    [24]

    Mangold M, Wittwer V J, Sieber O D, Martin H, Igor L K, Daniil A L, Matthias G, Thomas S, Ursula K 2012 Opt. Express 20 4136Google Scholar

    [25]

    Fan L, Hader J, Schillgalies M, Fallahi M, Zakharian A R, Moloney J V, Bedford R, Murrary J T, Koch S W, Stolz W 2005 IEEE Photonic Tech. L. 17 1764Google Scholar

    [26]

    Sandusky J V, Brueck S R J 1996 IEEE Photonic Tech. L. 8 313Google Scholar

    [27]

    王亚龙, 王庆, 李文静, 王雅兰 2018 光学技术 44 88

    Wang Y L, Wang Q, Li W J, Wang Y L 2018 Opt. Tech. 44 88

  • [1] 杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂. 基于光学反馈频率锁定的窄线宽稳定中红外激光产生技术研究. 物理学报, 2024, 73(1): 014205. doi: 10.7498/aps.73.20231049
    [2] 王涛, 彭雪芳, 贺亮, 沈小雨, 朱仁江, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 509 nm高功率宽调谐外腔面发射激光器. 物理学报, 2024, 73(12): 124204. doi: 10.7498/aps.73.20240499
    [3] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量. 物理学报, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [4] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [5] 沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏. 双波长自锁模半导体薄片激光器. 物理学报, 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [6] 张福领, 付丽珊, 胡丕丽, 韩文杰, 王宏卓, 张峰, 关宝璐. 795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性. 物理学报, 2021, 70(22): 224207. doi: 10.7498/aps.70.20210293
    [7] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用. 物理学报, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [8] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [9] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [10] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器. 物理学报, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [11] 焦东东, 高静, 刘杰, 邓雪, 许冠军, 陈玖朋, 董瑞芳, 刘涛, 张首刚. 用于光频传递的通信波段窄线宽激光器研制及应用. 物理学报, 2015, 64(19): 190601. doi: 10.7498/aps.64.190601
    [12] 李阳, 刘艳, 刘志波, 简水生. 基于增强瑞利反馈的单模窄线宽随机激光器. 物理学报, 2015, 64(8): 084206. doi: 10.7498/aps.64.084206
    [13] 侯磊, 韩海年, 张龙, 张金伟, 李德华, 魏志义. 243 nm稳频窄线宽半导体激光器. 物理学报, 2015, 64(13): 134205. doi: 10.7498/aps.64.134205
    [14] 高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏. 用于互组跃迁谱测量的窄线宽激光系统. 物理学报, 2014, 63(14): 140704. doi: 10.7498/aps.63.140704
    [15] 毛嵩, 吴正茂, 樊利, 杨海波, 赵茂戎, 夏光琼. 基于次谐波调制光注入半导体激光器获取窄线宽微波信号的实验研究. 物理学报, 2014, 63(24): 244204. doi: 10.7498/aps.63.244204
    [16] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [17] 薛力芳, 张强, 李芳, 周燕, 刘育梁. 高频调制大功率窄线宽分布反馈光纤激光器. 物理学报, 2011, 60(1): 014213. doi: 10.7498/aps.60.014213
    [18] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [19] 孔令琴, 樊林林, 王安帮, 王云才. 相干长度可连续调谐的半导体激光器. 物理学报, 2009, 58(11): 7680-7685. doi: 10.7498/aps.58.7680
    [20] 王海波, 翟泽辉, 马艳, 王少凯, 郜江瑞, 谢常德, 彭堃墀. 连续可调谐OPO及其在Cs2分子频率调制光谱中的应用. 物理学报, 2002, 51(5): 1011-1016. doi: 10.7498/aps.51.1011
计量
  • 文章访问数:  5582
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-06-13
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回